Saturday, October 5, 2024

Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds - EARTH

Tropical thunderstorm with lightning, near the airport of Santa Marta, Colombia.

Credit: Oscar van der Velde

There’s more to thunderclouds than rain and lightning. Along with visible light emissions, thunderclouds can produce intense bursts of gamma rays, the most energetic form of light, that last for millionths of a second. The clouds can also glow steadily with gamma rays for seconds to minutes at a time.

Researchers using NASA airborne platforms have now found a new kind of gamma-ray emission that’s shorter in duration than the steady glows and longer than the microsecond bursts. They’re calling it a flickering gamma-ray flash. The discovery fills in a missing link in scientists’ understanding of thundercloud radiation and provides new insights into the mechanisms that produce lightning. The insights, in turn, could lead to more accurate lightning risk estimates for people, aircraft, and spacecraft.

Researchers from the University of Bergen in Norway led the study in collaboration with scientists from NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA's Goddard Space Flight Center in Greenbelt, Maryland, the U.S. Naval Research Laboratory, and multiple universities in the U.S., Mexico, Colombia, and Europe. The findings were described in a pair of papers in Nature, published Oct. 2.

The international research team made their discovery while flying a battery of detectors aboard a NASA ER-2 research aircraft. In July 2023, the ER-2 set out on a series of 10 flights from MacDill Air Force Base in Tampa, Florida. The plane flew figure-eight flight patterns a few miles above tropical thunderclouds in the Caribbean and Central America, providing unprecedented views of cloud activity.

The scientific payload was developed for the Airborne Lightning Observatory for Fly’s Eye Geostationary Lightning Mapper Simulator and Terrestrial Gamma-ray Flashes (ALOFT) campaign. Instrumentation in the payload included weather radars along with multiple sensors for measuring gamma rays, lightning flashes, and microwave emissions from clouds.  

NASA’s high-flying ER-2 airplane carries instrumentation in this artist’s impression of the ALOFT mission to record gamma rays (colored purple for illustration) from thunderclouds. Credit: NASA/ALOFT team

The researchers had hoped ALOFT instruments would observe fast radiation bursts known as terrestrial gamma-ray flashes (TGFs). The flashes, first discovered in 1992 by NASA’s Compton Gamma Ray Observatory spacecraft, accompany some lightning strikes and last only millionths of a second. Despite their high intensity and their association with visible lightning, few TGFs have been spotted during previous aircraft-based studies.  

“I went to a meeting just before the ALOFT campaign,” said principal investigator Nikolai Østgaard, a space physicist with the University of Bergen. “And they asked me: ‘How many TGFs are you going to see?’ I said: ‘Either we’ll see zero, or we’ll see a lot.’ And then we happened to see 130.”

However, the flickering gamma-ray flashes were a complete surprise.

“They’re almost impossible to detect from space,” said co-principal investigator Martino Marisaldi, who is also a University of Bergen space physicist. “But when you are flying at 20 kilometers [12.5 miles] high, you're so close that you will see them.” The research team found more than 25 of these new flashes, each lasting between 50 to 200 milliseconds. 

The abundance of fast bursts and the discovery of intermediate-duration flashes could be among the most important thundercloud discoveries in a decade or more, said University of New Hampshire physicist Joseph Dwyer, who was not involved in the research. “They’re telling us something about how thunderstorms work, which is really important because thunderstorms produce lightning that hurts and kills a lot of people.” 

More broadly, Dwyer said he is excited about the prospects of advancing the field of meteorology. “I think everyone assumes that we figured out lightning a long time ago, but it’s an overlooked area … we don’t understand what’s going on inside those clouds right over our heads.” The discovery of flickering gamma-ray flashes may provide crucial clues scientists need to understand thundercloud dynamics, he said.

Turning to aircraft-based instrumentation rather than satellites ensured a lot of bang for research bucks, said the study’s project scientist, Timothy Lang of NASA’s Marshall Space Flight Center in Huntsville, Alabama. 

“If we had gotten one flash, we would have been ecstatic — and we got well over 100,” he said. This research could lead to a significant advance in our understanding of thunderstorms and radiation from thunderstorms. “It shows that if you have the right problem and you're willing to take a little bit of risk, you can have a huge payoff.”

By James Riordon, NASA’s Earth Science News Team 

Source: Via NASA Plane, Scientists Find New Gamma-ray Emission in Storm Clouds - NASA Science

Artificial left ventricle mimics the shape and function of the human heart

Credit: Thanh Nho Do

A team of biomechanical engineers at the University of New South Wales, working with a colleague from Queensland University of Technology and cardiac surgeons at St Vincent's Hospital, Sydney, has developed an artificial human heart left ventricle (LV) that can be used for training heart surgeons and other doctors.

In their paper published in the journal Science Robotics, the group describes how the artificial LV was made, its features and possible uses for it.

Because the LV can be animated, the researchers describe it as a type of robot—one that can imitate the movements of an actual human heart. It is also adjustable, which means it can be configured to mimic the heart of a patient about to undergo heart surgery, allowing a surgeon to practice a procedure before heading into the OR.

To create the LV, the researchers gave themselves the goal of creating a device that could simulate all the types of motion that occur in a real heart, including those that involve radial motion. To create such a device, they attempted to replicate the three basic muscle types in the human heart. 

Credit: Thanh Nho Do

The LV they created has three layers meant to imitate the epicardium, the transmural and the endocardium—all made using "tunable hydraulic filament artificial muscle fibers." Doing so allowed them to customize heart muscle density, the angles of the fibers that connect the muscles together and its ventricular shape. The LV is also able to pump simulated blood.

Testing of the device has been done by connecting it to hoses that carry the artificial blood in a loop. Surgeons at St Vincent's Hospital tested for compatibility with real human hearts, by evaluating the device as it was held still and while beating, pushing blood through the hoses. In so doing, they found the LV capable of faithfully simulating the actions of a real human heart.

The team also tested the device's ability to be configured in ways that mimic heart conditions requiring medical intervention and to respond in ways the human heart would as it was fixed by a surgeon, including fitting the LV with an intra-aortic balloon pump as it was beating.

The team concludes by claiming that their device is a much better training aid than other artificial hearts available now, and expect it to become a tool used by clinicians, instructors, and students learning to treat heart ailments. 

by Bob Yirka , Medical Xpress

Source: Artificial left ventricle mimics the shape and function of the human heart (medicalxpress.com)   

The Ocean and Climate Change - NASA - EARTH


Our ocean is changing. With 70 percent of the planet covered in water, the seas are important drivers of the global climate. Yet increasing greenhouse gases from human activities are altering the ocean before our eyes. NASA and its partners are on a mission to find out more.

For more information: The Ocean and Climate Change - NASA Science

Source: Climate Change - NASA Science

 

NASA’s TESS Spots Record-Breaking Stellar Triplets - UNIVERSE

 

Watch how the three stars in the system called TIC 290061484 eclipse each other over about 75 days. The line at the bottom is the plot of the system’s brightness over time, as seen by TESS (Transiting Exoplanet Survey Satellite). The inset shows the system from above.
NASA’s Goddard Space Flight Center

Professional and amateur astronomers teamed up with artificial intelligence to find an unmatched stellar trio called TIC 290061484, thanks to cosmic “strobe lights” captured by NASA’s TESS (Transiting Exoplanet Survey Satellite)

The system contains a set of twin stars orbiting each other every 1.8 days, and a third star that circles the pair in just 25 days. The discovery smashes the record for shortest outer orbital period for this type of system, set in 1956, which had a third star orbiting an inner pair in 33 days.

“Thanks to the compact, edge-on configuration of the system, we can measure the orbits, masses, sizes, and temperatures of its stars,” said Veselin Kostov, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the SETI Institute in Mountain View, California. “And we can study how the system formed and predict how it may evolve.”

paper, led by Kostov, describing the results was published in The Astrophysical Journal Oct. 2.

This artist’s concept illustrates how tightly the three stars in the system called TIC 290061484 orbit each other. If they were placed at the center of our solar system, all the stars’ orbits would be contained a space smaller than Mercury’s orbit around the Sun. The sizes of the triplet stars and the Sun are also to scale.

NASA’s Goddard Space Flight Center

Flickers in starlight helped reveal the tight trio, which is located in the constellation Cygnus. The system happens to be almost flat from our perspective. This means the stars each cross right in front of, or eclipse, each other as they orbit. When that happens, the nearer star blocks some of the farther star’s light.

Using machine learning, scientists filtered through enormous sets of starlight data from TESS to identify patterns of dimming that reveal eclipses. Then, a small team of citizen scientists filtered further, relying on years of experience and informal training to find particularly interesting cases.

These amateur astronomers, who are co-authors on the new study, met as participants in an online citizen science project called Planet Hunters, which was active from 2010 to 2013. The volunteers later teamed up with professional astronomers to create a new collaboration called the Visual Survey Group, which has been active for over a decade.

“We’re mainly looking for signatures of compact multi-star systems, unusual pulsating stars in binary systems, and weird objects,” said Saul Rappaport, an emeritus professor of physics at MIT in Cambridge. Rappaport co-authored the paper and has helped lead the Visual Survey Group for more than a decade. “It’s exciting to identify a system like this because they’re rarely found, but they may be more common than current tallies suggest.” Many more likely speckle our galaxy, waiting to be discovered.

Partly because the stars in the newfound system orbit in nearly the same plane, scientists say it’s likely very stable despite their tight configuration (the trio’s orbits fit within a smaller area than Mercury’s orbit around the Sun). Each star’s gravity doesn’t perturb the others too much, like they could if their orbits were tilted in different directions.

But while their orbits will likely remain stable for millions of years, “no one lives here,” Rappaport said. “We think the stars formed together from the same growth process, which would have disrupted planets from forming very closely around any of the stars.” The exception could be a distant planet orbiting the three stars as if they were one.

As the inner stars age, they will expand and ultimately merge, triggering a supernova explosion in around 20 to 40 million years.

In the meantime, astronomers are hunting for triple stars with even shorter orbits. That’s hard to do with current technology, but a new tool is on the way.

This graphic highlights the search areas of three transit-spotting missions: NASA’s upcoming Nancy Grace Roman Space Telescope, TESS (the Transiting Exoplanet Survey Satellite), and the retired Kepler Space Telescope. Kepler found 13 triply eclipsing triple star systems, TESS has found more than 100 so far, and astronomers expect Roman to find more than 1,000.

NASA’s Goddard Space Flight Center

Images from NASA’s upcoming Nancy Grace Roman Space Telescope will be much more detailed than TESS’s. The same area of the sky covered by a single TESS pixel will fit more than 36,000 Roman pixels. And while TESS took a wide, shallow look at the entire sky, Roman will pierce deep into the heart of our galaxy where stars crowd together, providing a core sample rather than skimming the whole surface.

“We don’t know much about a lot of the stars in the center of the galaxy except for the brightest ones,” said Brian Powell, a co-author and data scientist at Goddard. “Roman’s high-resolution view will help us measure light from stars that usually blur together, providing the best look yet at the nature of star systems in our galaxy.”

And since Roman will monitor light from hundreds of millions of stars as part of one of its main surveys, it will help astronomers find more triple star systems in which all the stars eclipse each other.

“We’re curious why we haven’t found star systems like these with even shorter outer orbital periods,” said Powell. “Roman should help us find them and bring us closer to figuring out what their limits might be.”

Roman could also find eclipsing stars bound together in even larger groups — half a dozen, or perhaps even more all orbiting each other like bees buzzing around a hive.

“Before scientists discovered triply eclipsing triple star systems, we didn’t expect them to be out there,” said co-author Tamás Borkovits, a senior research fellow at the Baja Observatory of The University of Szeged in Hungary. “But once we found them, we thought, well why not? Roman, too, may reveal never-before-seen categories of systems and objects that will surprise astronomers.”

TESS is a NASA Astrophysics Explorer mission managed by NASA Goddard and operated by MIT in Cambridge, Massachusetts. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

NASA’s citizen science projects are collaborations between scientists and interested members of the public and do not require U.S. citizenship. Through these collaborations, volunteers (known as citizen scientists) have helped make thousands of important scientific discoveries. To get involved with a project, visit NASA’s Citizen Science page.

Download additional images and video from NASA’s Scientific Visualization Studio.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
 

Source: NASA’s TESS Spots Record-Breaking Stellar Triplets - NASA  

NASA Seeks Innovators for Lunar Waste Competition

By Savannah Bullard 

A new NASA competition, the LunaRecycle Challenge, is open and offering $3 million in prizes for innovations in recycling material waste on deep space missions. 

As NASA continues efforts toward long-duration human space travel, including building a sustained human presence on the Moon through its Artemis missions, the agency needs novel solutions for processing inorganic waste streams like food packaging, discarded clothing, and science experiment materials. While previous efforts focused on the reduction of trash mass and volume, this challenge will prioritize technologies for recycling waste into usable products needed for off-planet science and exploration activities.  

NASA’s LunaRecycle Challenge will incentivize the design and development of energy-efficient, low-mass, and low-impact recycling solutions that address physical waste streams and improve the sustainability of longer-duration lunar missions. Through the power of open innovation, which draws on the public’s ingenuity and creativity to find solutions, NASA can restructure the agency’s approach to waste management, support the future of space travel, and revolutionize waste treatments on Earth, leading to greater sustainability on our home planet and beyond.  


“Operating sustainably is an important consideration for NASA as we make discoveries and conduct research both away from home and on Earth,” said Amy Kaminski, program executive for NASA’s Prizes, Challenges, and Crowdsourcing program. “With this challenge, we are seeking the public’s innovative approaches to waste management on the Moon and aim to take lessons learned back to Earth for the benefit of all.” 

NASA’s LunaRecycle Challenge will offer two competition tracks: a Prototype Build track and a Digital Twin track. The Prototype Build Track focuses on designing and developing hardware components and systems for recycling one or more solid waste streams on the lunar surface. The Digital Twin Track focuses on designing a virtual replica of a complete system for recycling solid waste streams on the lunar surface and manufacturing end products. Offering a Digital Twin track further lowers the barrier of entry for global solvers to participate in NASA Centennial Challenges and contribute to agency missions and initiatives.  

Teams will have the opportunity to compete in either or both competition tracks, each of which will carry its own share of the prize purse. 

The LunaRecycle Challenge also will address some of the aerospace community’s top technical challenges. In July 2024, NASA’s Space Technology Mission Directorate released a ranked list of 187 technology areas requiring further development to meet future exploration, science, and other mission needs. The results integrated inputs from NASA mission directorates and centers, industry organizations, government agencies, academia, and other interested individuals to help guide NASA’s space technology development and investments. This list and subsequent updates will help inform future Centennial Challenges.  

The three technological needs that LunaRecycle will address include logistics tracking, clothing, and trash management for habitation; in-space and on-surface manufacturing of parts and products; and in-space and on-surface manufacturing from recycled and reused materials. 

“I am pleased that NASA’s LunaRecycle Challenge will contribute to solutions pertaining to technological needs within advanced manufacturing and habitats,” said Kim Krome,  acting program manager for agency’s Centennial Challenges, and challenge manager of LunaRecycle. “We are very excited to see what solutions our global competitors generate, and we are eager for this challenge to serve as a positive catalyst for bringing the agency, and humanity, closer to exploring worlds beyond our own.” 

NASA has contracted The University of Alabama to be the allied partner for the duration of the challenge. The university, based in Tuscaloosa, Alabama, will coordinate with former Centennial Challenge winner AI Spacefactory to facilitate the challenge and manage its competitors.  

To register as a participant in NASA’s LunaRecycle Challenge, visit: lunarecyclechallenge.ua.edu

NASA’s LunaRecycle Challenge is led by the agency’s Kennedy Space Center in Merritt Island, Florida, with support from Marshall Space Flight Center in Huntsville, Alabama. The competition is a NASA’s Centennial Challenge, based at NASA Marshall. Centennial Challenges are part of NASA’s Prizes, Challenges, and Crowdsourcing program within the agency’s Space Technology Mission Directorate.  

 

 

Beth Ridgeway,
NASA's Marshall Space Flight Center

Source: NASA Seeks Innovators for Lunar Waste Competition  - NASA