By recreating the helical structure of heart muscles, researchers improve understanding of how the heart beats
Heart disease — the leading cause of death in the U.S. — is so deadly in part because the heart, unlike other organs, cannot repair itself after injury. That is why tissue engineering, ultimately including the wholesale fabrication of an entire human heart for transplant, is so important for the future of cardiac medicine.
To build a human heart from the ground
up, researchers need to replicate the unique structures that make up the heart.
This includes recreating helical geometries, which create a twisting motion as
the heart beats. It’s been long theorized that this twisting motion is critical
for pumping blood at high volumes, but proving that has been difficult, in part
because creating hearts with different geometries and alignments has been
challenging.
Bioengineers from the Harvard John A. Paulson School of Engineering and Applied
Sciences (SEAS) have
developed the first biohybrid model of human ventricles with helically aligned
beating cardiac cells, and have shown that muscle alignment does, in fact,
dramatically increases how much blood the ventricle can pump with each
contraction.
This advancement was made possible using a new method
of additive textile manufacturing, Focused Rotary Jet Spinning (FRJS), which
enabled the high-throughput fabrication of helically aligned fibers with
diameters ranging from several micrometers to hundreds of nanometers. Developed
at SEAS by Kit Parker’s Disease Biophysics Group, FRJS fibers direct cell alignment, allowing for the
formation of controlled tissue engineered structures.
The research is published in Science.
“This work is a major step forward for organ biofabrication and brings us closer to our ultimate goal of building a human heart for transplant,” said Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the paper.
Solving a 300-year-old mystery
A schematic diagram of the helical alignment of a human heart. (Credit: Michael Rosnach/Harvard SEAS)
This work has its roots in a centuries old mystery. In
1669, English physician Richard Lower — a man who counted John Locke among his
colleagues and King Charles II among his patients — first noted the spiral-like
arrangement of heart muscles in his seminal work Tractatus de Corde.
Over the next three centuries,
physicians and scientists have built a more comprehensive understanding of the
heart’s structure but the purpose of those spiraling muscles has remained
frustratingly hard to study.
In 1969, Edward Sallin, former chair of
the Department of Biomathematics at the University of Alabama Birmingham
Medical School, argued that the heart’s helical alignment is critical to
achieving large ejection fractions — the percentage of how much blood the
ventricle pumps with each contraction.
“Our goal was to build a model where we
could test Sallin’s hypothesis and study the relative importance of the heart’s
helical structure,” said John Zimmerman, a postdoctoral fellow at SEAS and
co-first author of the paper.
To test Sallin’s theory, the SEAS
researchers used the FRJS system to control the alignment of spun fibers on
which they could grow cardiac cells.
The first step of FRJS works like a
cotton candy machine — a liquid polymer solution is loaded into a reservoir and
pushed out through a tiny opening by centrifugal force as the device spins. As
the solution leaves the reservoir, the solvent evaporates, and the polymers
solidify to form fibers. Then, a focused airstream controls the orientation of
the fiber as they are deposited on a collector. The team found that by angling
and rotating the collector, the fibers in the stream would align and twist
around the collector as it spun, mimicking the helical structure of heart
muscles.
The alignment of the fibers can be tuned
by changing the angle of the collector.
“The human heart actually has multiple
layers of helically aligned muscles with different angles of alignment,” said
Huibin Chang, a postdoctoral fellow at SEAS and co-first author of the paper.
“With FRJS, we can recreate those complex structures in a really precise way,
forming single and even four chambered ventricle structures.”
Unlike 3D printing, which gets slower as
features get smaller, FRJS can quickly spin fibers at the single micron scale –
or about fifty times smaller than a single human hair. This is important when
it comes to building a heart from scratch. Take collagen for instance, an
extracellular matrix protein in the heart, which is also a single micron in
diameter. It would take more than 100 years to 3D print every bit of collagen
in the human heart at this resolution. FRJS can do it in a single day.
After spinning, the ventricles were
seeded with rat cardiomyocyte or human stem cell derived cardiomyocyte cells.
Within about a week, several thin layers of beating tissue covered the
scaffold, with the cells following the alignment of the fibers beneath.
The beating ventricles mimicked the same
twisting or wringing motion present in human hearts.
The researchers compared the ventricle
deformation, speed of electrical signaling and ejection fraction between
ventricles made from helical aligned fibers and those made from
circumferentially aligned fibers. They found on every front, the
helically aligned tissue outperformed the circumferentially aligned
tissue.
“Since 2003, our group has worked to
understand the structure-function relationships of the heart and how disease
pathologically compromises these relationships,” said Parker. “In this
case, we went back to address a never tested observation about the helical
structure of the laminar architecture of the heart. Fortunately,
Professor Sallin published a theoretical prediction more than a half century
ago and we were able to build a new manufacturing platform that enabled us to
test his hypothesis and address this centuries-old question.”
Parker actually arrived at the
University of Alabama Medical Center before Sallin; Parker was born there, and
Sallin joined the UAB School of Medicine faculty a few months later.
The team also demonstrated that the
process can be scaled up to the size of an actual human heart and even larger,
to the size of a Minke whale heart (they didn’t seed the larger models with
cells as it would take billions of cardiomyocyte cells).
Source and further reading: https://www.seas.harvard.edu/news/2022/07/major-step-forward-organ-biofabrication
Journal article: https://www.science.org/doi/10.1126/science.abl6395
Source: A major step forward for organ biofabrication – Scents of Science (myfusimotors.com)
No comments:
Post a Comment