Lee esta nota de prensa en español aquí.
As NASA prepares to send astronauts back to the Moon under Artemis, the
agency has identified 13 candidate landing regions near the lunar South Pole.
Each region contains multiple potential landing sites for Artemis III, which
will be the first of the Artemis missions to bring crew to the lunar surface,
including the first woman to set foot on the Moon.
“Selecting these regions means we are one giant leap closer to returning
humans to the Moon for the first time since Apollo,” said Mark Kirasich, deputy
associate administrator for the Artemis Campaign Development Division at NASA
Headquarters in Washington. “When we do, it will be unlike any mission that’s
come before as astronauts venture into dark areas previously unexplored by
humans and lay the groundwork for future long-term stays.”
NASA identified the following candidate regions for an Artemis III lunar
landing:
- Faustini Rim A
- Peak Near Shackleton
- Connecting Ridge
- Connecting Ridge Extension
- de Gerlache Rim 1
- de Gerlache Rim 2
- de Gerlache-Kocher Massif
- Haworth
- Malapert Massif
- Leibnitz Beta Plateau
- Nobile Rim 1
- Nobile Rim 2
- Amundsen Rim
Each of these regions is located within six degrees of latitude of the
lunar South Pole and, collectively, contain diverse geologic features.
Together, the regions provide landing options for all potential Artemis III
launch opportunities. Specific landing sites are tightly coupled to the timing
of the launch window, so multiple regions ensure flexibility to launch throughout
the year.
To select the regions, an agencywide team of scientists and engineers assessed the area near the lunar South Pole using data from NASA’s Lunar Reconnaissance Orbiter and decades of publications and lunar science findings. In addition to considering launch window availability, the team evaluated regions based on their ability to accommodate a safe landing, using criteria including terrain slope, ease of communications with Earth, and lighting conditions. To determine accessibility, the team also considered combined capabilities of the Space Launch System rocket, the Orion spacecraft, and the SpaceX-provided Starship human landing system.
NASA has announced the identification of 13 candidate landing regions near the Moon's South Pole for the Artemis III mission, the first crewed mission to the Moon's surface since 1972. This video features a data visualization showing the locations of all 13 regions, and highlights the interesting lunar topography and exploration potential of these areas Credits: NASA's Goddard Space Flight Center Download this video and related multimedia in HD formats from NASA Goddard's Scientific Visualization Studio
All regions considered are scientifically significant because of their
proximity to the lunar South Pole, which is an area that contains permanently
shadowed regions rich in resources and in terrain unexplored by humans.
“Several of the proposed sites within the regions are located among some of
the oldest parts of the Moon, and together with the permanently shadowed
regions, provide the opportunity to learn about the history of the Moon through
previously unstudied lunar materials,” said Sarah Noble, Artemis lunar science
lead for NASA’s Planetary Science Division.
The analysis team weighed other landing criteria with specific Artemis
III science objectives, including the goal to land close enough to a permanently shadowed region
to allow crew to conduct a moonwalk, while limiting disturbance when landing.
This will allow crew to collect samples and conduct scientific analysis in an
uncompromised area, yielding important information about the depth,
distribution, and composition of water ice that was confirmed at the Moon’s South Pole.
The team identified regions that can fulfill the moonwalk objective by
ensuring proximity to permanently shadowed regions, and also factored in other
lighting conditions. All 13 regions contain sites that provide continuous
access to sunlight throughout a 6.5-day period – the planned duration of the
Artemis III surface mission. Access to sunlight is critical for a long-term
stay at the Moon because it provides a power source and minimizes temperature
variations.
“Developing a blueprint for exploring the solar system means learning how
to use resources that are available to us while also preserving their
scientific integrity”, said Jacob Bleacher, chief exploration scientist for
NASA. “Lunar water ice is valuable from a scientific perspective and also as a
resource, because from it we can extract oxygen and hydrogen for life support
systems and fuel.”
NASA will discuss the 13 regions with broader science and engineering
communities through conferences and workshops to solicit input about the merits
of each region. This feedback will inform site selections in the future, and
NASA may identify additional regions for consideration. The agency will also
continue to work with SpaceX to confirm Starship’s landing capabilities and
assess the options accordingly.
NASA will select sites within regions for Artemis III after it identifies
the mission’s target launch dates, which dictate transfer trajectories and
surface environment conditions.
Through Artemis, NASA will land the first woman and the first person of color on the Moon, paving the way for a long-term, sustainable lunar presence and serving as a steppingstone for future astronaut missions to Mars.
For more information on Artemis, visit: https://www.nasa.gov/specials/artemis/
No comments:
Post a Comment