Epilepsy is
present in 4% of the population, and is among the most common brain disorders
in children. Modern medicine can prevent most seizure recurrences, but
approximately 20% of patients do not respond to treatment.
In these cases, the reason may originate in patches of
damaged or abnormal brain tissue known as "malformations of cortical development" (MCD),
which results in a diverse group of neurodevelopment disorders. Surgical
resection or removal of the patch can cure the seizures, and epilepsy surgery to improve neurological outcomes is now a key part of the
modern medical armamentarium, but what causes the patches has largely remained
a mystery.
Writing in the January 12, 2023 issue of Nature Genetics, researchers at University
of California San Diego School of Medicine and Rady Children's Institute for
Genomic Medicine, collaborating with an international consortium of more than
20 children's hospitals worldwide, report a significant breakthrough in
understanding the genetic causes of MCD.
Members of the Focal Cortical Dysplasia Neurogenetics Consortium investigated 283 brain resections from children across a range of MCD types, with parental consent, looking for potential genetic causes. Because most brain tissue in these children is normal, the scientists focused on mutations present in a small subset of brain cells, a phenomenon termed genetic somatic mosaicism.
An
international consortium led by UC San Diego has identified at least some of
the genetic drivers of a mysterious form of pediatric epilepsy. Credit: UC San
Diego Health Sciences
"This was a decade-long journey,
bringing specialists together from around the world, to recruit patients for
this study," said senior study author Joseph Gleeson, MD, Rady Professor
of Neuroscience at UC San Diego School of Medicine and director of neuroscience
research at the Rady Children's Institute for Genomic Medicine. "Until
recently, most hospitals did not study resected brain tissue for genetic
causes. The consortium organized a biobank to store tissue for high-throughput
mosaicism analysis."
Previous research by Gleeson and
colleagues had shown that genetic somatic mosaicism in the mTOR signaling
pathway was a contributing factor, said co-first author Changuk Chung, Ph.D., a
postdoctoral fellow in the Gleeson lab.
"But most patients remain
undiagnosed, which hinders treatment. We tested for hidden mutations,
detectable only by greatly expanding the cohort size and improving methods so
that the results could be meaningful. We collaborated to solve technical and
logistical bottlenecks. The pieces fell into place, but it took 10 years."
The team conducted intensive genomic
discovery using state-of-art somatic mosaic algorithms developed by the National
Institutes of Health-sponsored Brain Somatic Mosaicism Network, of which UC San
Diego is a member.
"We tried our best to detect
mutations in as little as 1 percent of cells," said co-first author Xiaoxu
Yang, Ph.D., a postdoctoral scholar in Gleeson's lab. "Initially we
failed. To solve these problems, we needed to develop novel artificial
intelligence methods to overcome barriers in sensitivity and specificity."
The team ultimately identified 69
different genes carrying somatic brain mutations, the majority of which have
never previously reported in MCD.
"We can draw parallels with the
cancer field because these mutations disrupt cellular function and need to be
resected," said co-first author Chung. "However, unlike cancer cells, brain cells
mostly do not divide so these cells misbehave by stimulating epileptic
seizures. The question that arose was whether the newly found gene mutations were
sufficient to cause MCD disease."
Gleeson said the scientists found that
the genes converged on calcium signaling, gene expression and synaptic functions, and noted that when
the mutations were introduced into a mouse model, abnormalities similar to those seen in patients were
observed. The study authors suggest the findings could be used to improve
diagnosis and develop cures for MCD disease.
"The MCD genes in patient brains have demonstrated critical roles during cortical development," said Gleeson. "These findings could lead to new molecular classifications for MCD, and ultimately to personalized therapies for epilepsy."
By University of California - San Diego
Source: Study identifies cause for mysterious cases of epilepsy in children (medicalxpress.com)
No comments:
Post a Comment