Lee esta historia en español aquí.
If you want to build a habitable planet,
ices are a vital ingredient because they are the main source of several key
elements — namely carbon, hydrogen, oxygen, nitrogen, and sulfur (referred to
here as CHONS). These elements are important ingredients in both planetary
atmospheres and molecules like sugars, alcohols, and simple amino acids.
An international team of astronomers using
NASA’s James Webb Space Telescope has obtained an in-depth inventory of the
deepest, coldest ices measured to date in a molecular cloud. In addition to
simple ices like water, the team was able to identify frozen forms of a wide
range of molecules, from carbonyl sulfide, ammonia, and methane, to the
simplest complex organic molecule, methanol. (The researchers considered
organic molecules to be complex when having six or more atoms.) This is the
most comprehensive census to date of the icy ingredients available to make
future generations of stars and planets, before they are heated during the
formation of young stars.
“Our results provide insights into the
initial, dark chemistry stage of the formation of ice on the interstellar dust
grains that will grow into the centimeter-sized pebbles from which planets form
in disks,” said Melissa McClure, an astronomer at Leiden Observatory in the
Netherlands, who is the principal investigator of the observing program and
lead author of the paper describing this result. “These observations open a new
window on the formation pathways for the simple and complex molecules that are
needed to make the building blocks of life.”
In addition to the identified molecules,
the team found evidence for molecules more complex than methanol, and, although
they didn't definitively attribute these signals to specific molecules, this
proves for the first time that complex molecules form in the icy depths of
molecular clouds before stars are born.
“Our identification of complex organic
molecules, like methanol and potentially ethanol, also suggests that the many
star and planetary systems developing in this particular cloud will inherit
molecules in a fairly advanced chemical state,” added Will Rocha, an astronomer
at Leiden Observatory who contributed to this discovery. “This could mean that
the presence of precursors to prebiotic molecules in planetary systems is a
common result of star formation, rather than a unique feature of our own solar
system.”
Astronomers
have taken an inventory of the most deeply embedded ices in a cold molecular
cloud to date. They used light from a background star, named NIR38, to
illuminate the dark cloud called Chamaeleon I. Ices within the cloud absorbed
certain wavelengths of infrared light, leaving spectral fingerprints called
absorption lines. These lines indicate which substances are present within the
molecular cloud. These graphs show spectral data from three of the James Webb
Space Telescope’s instruments. In addition to simple ices like water, the
science team was able to identify frozen forms of a wide range of molecules,
from carbon dioxide, ammonia, and methane, to the simplest complex organic
molecule, methanol. Credits: NASA, ESA, CSA, and J. Olmsted (STScI)
By detecting the sulfur-bearing ice
carbonyl sulfide, the researchers were able to estimate the amount of sulfur
embedded in icy pre-stellar dust grains for the first time. While the amount
measured is larger than previously observed, it is still less than the total
amount expected to be present in this cloud, based on its density. This is true
for the other CHONS elements as well. A key challenge for astronomers is
understanding where these elements are hiding: in ices, soot-like materials, or
rocks. The amount of CHONS in each type of material determines how much of
these elements end up in exoplanet atmospheres and how much in their interiors.
"The fact that we haven't seen all of
the CHONS that we expect may indicate that they are locked up in more rocky or
sooty materials that we cannot measure,” explained McClure. “This could allow a
greater diversity in the bulk composition of terrestrial planets.”
Chemical characterization of the ices was
accomplished by studying how starlight from beyond the molecular cloud was
absorbed by icy molecules within the cloud at specific infrared wavelengths
visible to Webb. This process leaves behind chemical fingerprints known as absorption
lines which can be
compared with laboratory data to identify which ices (frozen molecules) are
present in the molecular cloud. In this study, the team targeted ices buried in
a particularly cold, dense, and difficult-to-investigate region of the
Chamaeleon I molecular cloud, a region roughly 500 light-years from Earth which
is currently in the process of forming dozens of young stars.
“We simply couldn't have observed these
ices without Webb,” elaborated Klaus Pontoppidan, Webb project scientist at the
Space Telescope Science Institute in Baltimore, Maryland, who was involved in
this research. “The ices show up as dips against a continuum of background
starlight. In regions that are this cold and dense, much of the light from the
background star is blocked, and Webb’s exquisite sensitivity was necessary to
detect the starlight and therefore identify the ices in the molecular cloud.”
This research forms part of the Ice Age project, one
of Webb's 13 Early Release
Science programs.
These observations are designed to showcase Webb’s observing capabilities and
to allow the astronomical community to learn how to get the best from its
instruments. The Ice Age team has already planned further observations, and
hopes to trace out the journey of ices from their formation through to the
assemblage of icy comets.
“This is just the first in a series of
spectral snapshots that we will obtain to see how the ices evolve from their
initial synthesis to the comet-forming regions of protoplanetary disks,”
concluded McClure. “This will tell us which mixture of ices — and therefore
which elements — can eventually be delivered to the surfaces of terrestrial
exoplanets or incorporated into the atmospheres of giant gas or ice planets.”
These results were published in the Jan. 23 issue of Nature Astronomy.
The
James Webb Space Telescope is the world's premier space science observatory.
Webb will solve mysteries in our solar system, look beyond to distant worlds
around other stars, and probe the mysterious structures and origins of our
universe and our place in it. Webb is an international program led by NASA with
its partners, ESA (European Space Agency) and the Canadian Space Agency.
Banner Image: This image by NASA’s James Webb Space Telescope’s Near-Infrared Camera (NIRCam) features the central region of the Chamaeleon I dark molecular cloud, which resides 630 light years away. The cold, wispy cloud material (blue, center) is illuminated in the infrared by the glow of the young, outflowing protostar Ced 110 IRS 4 (orange, upper left). The light from numerous background stars, seen as orange dots behind the cloud, can be used to detect ices in the cloud, which absorb the starlight passing through them. Credit: NASA, ESA, CSA, and M. Zamani (ESA)
Source: Webb Unveils Dark Side of Pre-stellar Ice Chemistry | NASA
No comments:
Post a Comment