Kuhl's pipistrelle. Credit: Jens Rydell
Echolocating
bats have been found to possess an acoustic cognitive map of their home range,
enabling them to navigate over kilometer-scale distances using echolocation
alone.
This finding, published in Science, was
demonstrated by researchers from the Max Planck Institute of Animal Behavior,
the Cluster of Excellence Center for the Advanced Study of Collective Behavior
at the University of Konstanz, Germany, Tel Aviv University, and the Hebrew
University of Jerusalem, Israel.
Would you be able to instantly recognize
your location and find your way home from any random point within a
three-kilometer radius, in complete darkness, with only a flashlight to guide
you?
Echolocating bats face a similar
challenge, with a local and directed beam of sound—their echolocation—to guide their way. Bats have long been known for
their use of echolocation to avoid obstacles and orient themselves.
However, the research team, led by Aya Goldshtein from Iain Couzin's group at the Max Planck Institute of Animal Behavior and the Cluster of Excellence Center for the Advanced Study of Collective Behavior at the University of Konstanz, has now shown that bats can identify their location even after being displaced and use echolocation to perform map-based navigation over long distances.
Video from the paper showing a reconstructed map
of the valley. Credit: Xing Chen
Study with 6-gram light bats
To explore this, the team conducted
experiments with Kuhl's pipistrelle (Pipistrellus kuhlii), a bat species weighing only 6 grams, in Israel's Hula Valley.
Over several nights, the researchers tracked 76 bats near their roosts and
relocated them to various points within a three-kilometer radius, but still
within their home range.
Each bat was tagged with an
innovative lightweight reverse GPS tracking system called ATLAS, which provided
high-resolution, real-time tracking.
Some bats were fitted solely with
the ATLAS system, while others were additionally manipulated to assess how
their vision, sense of smell, magnetic sense, and echolocation influenced their
ability to navigate back to their roosts.
Remarkably, even with echolocation
alone, 95% of the bats returned to their roosts within minutes, demonstrating
that bats can conduct kilometer-scale navigation using only this highly
directional, and relatively local, mode of sensing. However, it was also shown
that, when available, bats improve their navigation using vision.
"We were surprised to discover
that these bats also use vision," notes Aya Goldshtein. "That was not
what we expected. It was incredible to see that, even with such small eyes,
they can rely on vision under these conditions."
Modulation of each bat's flight
In addition to the field experiments, the team created a detailed map of the entire
valley. "We wanted to visualize what each bat experienced during flight
and understand how they used acoustic information to navigate," explains
Xing Chen, from Yossi Yovel's lab at Tel Aviv University, who developed the
valley's reconstruction.
The model revealed that bats tend
to fly near environmental features with higher "echoic entropy"—areas
that provide richer acoustic information.
"During the localization
phase, bats conduct a meandering flight that, at a certain point, changes to a
directional flight toward their destination, suggesting they already know where
they are," says Goldshtein. "Bats fly near environmental features
with more acoustic information and make navigation decisions."
Bats can use this acoustic
information to distinguish between environmental features such as a tree and a
road, and thus use them as acoustic landmarks.
Bats have an acoustic mental map
The study concludes that Kuhl's
pipistrelles can navigate over several kilometers using echolocation alone.
However, when vision is available, they enhance their navigation performance by
combining both senses.
After being displaced, these small bats first identify their new location and then fly home, using environmental features with distinctive acoustic cues as landmarks. This behavior suggests they possess an acoustic mental map of their home range.
No comments:
Post a Comment