A galactic halo is a loose collection of stars that
extends 15 to 20 times beyond the radius of the brightest part of the galaxy.
One of the few galaxies with a well-studied stellar halo is our neighbor,
Andromeda, depicted here in the graphic. The stellar halo is illustrated with
exaggerated brightness and density to show how far it extends. When the Nancy
Grace Roman Space Telescope launches, it will be able to use its wide field of
view to comprehensively image many more stellar halos of more distant galaxies.
NASA, J. Olmsted (STScI)
The universe is a dynamic, ever-changing place where galaxies are dancing,
merging together, and shifting appearance. Unfortunately, because these changes
take millions or billions of years, telescopes can only provide snapshots,
squeezed into a human lifetime.
However, galaxies leave behind
clues to their history and how they came to be. NASA’s upcoming Nancy Grace Roman Space Telescope will have the capacity to look for these fossils
of galaxy formation with high-resolution imaging of galaxies in the nearby
universe.
Astronomers, through a grant from
NASA, are designing a set of possible observations called RINGS (the Roman
Infrared Nearby Galaxies Survey) that would collect these remarkable images,
and the team is producing publicly available tools that the astronomy community
can use once Roman launches and starts taking data. The RINGS survey is a
preliminary concept that may or may not be implemented during Roman’s science
mission.
Roman is uniquely prepared for
RINGS due to its resolution akin to NASA’s Hubble Space Telescope and its wide field of view – – 200 times that of
Hubble in the infrared – – making it a sky survey telescope that complements
Hubble’s narrow-field capabilities.
Galactic Archaeologists
Scientists can only look at brief
instances in the lives of evolving galaxies that eventually lead to the fully
formed galaxies around us today. As a result, galaxy formation can be difficult
to track.
Luckily, galaxies leave behind
hints of their evolution in their stellar structures, almost like how organisms
on Earth can leave behind imprints in rock. These galactic “fossils” are groups
of ancient stars that hold the history of the galaxy’s formation and evolution,
including the chemistry of the galaxy when those stars formed.
These cosmic fossils are of
particular interest to Robyn Sanderson, the deputy principal investigator of
RINGS at the University of Pennsylvania in Philadelphia. She describes the
process of analyzing stellar structures in galaxies as “like going through an
excavation and trying to sort out bones and put them back together.”
Roman’s high resolution will allow
scientists to pick out these galactic fossils, using structures ranging from
long tidal tails on a galaxy’s outskirts to stellar streams within the galaxy.
These large-scale structures, which Roman is uniquely capable of capturing, can
give clues to a galaxy’s merger history. The goal, says Sanderson, is to
“reassemble these fossils in order to look back in time and understand how
these galaxies came to be.”
Shedding Light on Dark Matter
RINGS will also enable further
investigations of one of the most mysterious substances in the universe: dark
matter, an invisible form of matter that makes up most of a galaxy’s mass. A
particularly useful class of objects for testing dark matter theories are
ultra-faint dwarf galaxies. According to Raja GuhaThakurta of the University of
California, Santa Cruz, “Ultra faint dwarf galaxies are so dark
matter-dominated that they have very little normal matter for star formation.
With so few stars being created, ultra-faint galaxies can essentially be seen
as pure blobs of dark matter to study.”
Roman, thanks to its large field of
view and high resolution, will observe these ultra-faint galaxies to help test
multiple theories of dark matter. With these new data, the astronomical
community will come closer to finding the truth about this unobservable dark
matter that vastly outweighs visible matter: dark matter makes up about 80% of
the universe’s matter while normal matter comprises the remaining 20%.
Ultra-faint galaxies are far from
the only test of dark matter. Often, just looking in an average-sized galaxy’s
backyard is enough. Structures in the halo of stars surrounding a galaxy often
give hints to the amount of dark matter present. However, due to the sheer size
of galactic halos (they are often 15-20 times as big as the galaxy itself),
current telescopes are deeply inefficient at observing them.
At the moment, the only fully
resolved galactic halos scientists have to go on are our own Milky Way and
Andromeda, our neighbor galaxy. Ben Williams, the principal investigator of
RINGS at the University of Washington in Seattle, describes how Roman’s power
will amend this problem: “We only have reliable measurements of the Milky Way
and Andromeda, because those are close enough that we can get measurements of a
large number of stars distributed across their stellar halos. So, with Roman,
all of a sudden we’ll have 100 or more of these fully resolved galaxies.”
When Roman launches by May 2027, it
is expected to fundamentally alter how scientists understand galaxies. In the
process, it will shed some light on our own home galaxy. The Milky Way is easy
to study up close, but we do not have a large enough selfie stick to take a
photo of our entire galaxy and its surrounding halo. RINGS shows what Roman is
capable of should such a survey be approved. By studying the nearby universe,
RINGS can examine galaxies similar in size and age to the Milky Way, and shed
light on how we came to be here.
The Nancy Grace Roman Space
Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt,
Maryland, with participation by NASA’s Jet Propulsion Laboratory and
Caltech/IPAC in Southern California, the Space Telescope Science Institute in
Baltimore, and a science team comprising scientists from various research
institutions. The primary industrial partners are BAE Systems, Inc in Boulder,
Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific
& Imaging in Thousand Oaks, California.
By Patt Molinari
Space Telescope Science Institute, Baltimore, Md.
By: Ashley Balzer
Source: NASA's Roman Space Telescope to Investigate Galactic Fossils - NASA
No comments:
Post a Comment