We all wish that we could
sometimes see into the future. Now, thanks to the very latest data from ESA’s
star mapping Gaia mission, astronomers can do just that for the Sun. By
accurately identifying stars of similar mass and composition, they can see how
our Sun is going to evolve in the future. And this work extends far beyond a
little astrophysical clairvoyance.
Gaia’s third
major data release (DR3) was
made public on 13 June 2022. One of the major products to come out of this
release was a database of the intrinsic properties of hundreds of millions of
stars. These parameters include how hot they are, how big they are, and what
masses they contain.
Gaia takes exceptionally accurate
readings of a star’s apparent brightness, as seen from Earth, and its colour.
Turning those basic observational characteristics into the intrinsic properties
of a star is painstaking work.
Orlagh Creevey, Observatoire de la Côte
d’Azur, France, and collaborators from Gaia’s Coordination Unit 8, are
responsible for extracting such astrophysical parameters from Gaia’s
observations. In doing this, the team are building on the pioneering work of
astronomers working at Harvard College Observatory, Massachusetts, in the late
19th and early 20th centuries.
At that time, astronomers’ efforts were
centered on classifying the appearance of ‘spectral lines’. These are dark
lines that appear in the rainbow of colors produced when a star’s light is
split with a prism. Annie Jump Cannon devised a sequence of spectral
classification that ordered the stars according to the strength of these
spectral lines. This order was subsequently found to be directly related to the
temperature of the stars. Antonia Maury made a separate classification based
upon the width of certain spectral lines. It was later discovered that this
related to the luminosity and age of a star.
Correlating these two properties allows
every star in the Universe to be plotted on a single diagram. Known as the
Hertzsprung-Russell (HR) diagram, it has become one of the cornerstones of
astrophysics. Devised independently in 1911 by Ejnar Hertzsprung and in 1913 by
Henry Norris Russell,a HR diagram plots a star’s intrinsic luminosity against
its effective surface temperature. In doing so, it reveals how stars evolve
throughout their long life cycles.
While the mass of the star changes
relatively little during its lifetime, the star’s temperature and size varies
greatly as it ages. These changes are driven by the type of nuclear fusion
reactions that are taking place inside the star at the time.
A HR diagram made using data from Gaia DR2
With an age of around 4.57
billion years, our Sun is currently in its comfortable middle age, fusing
hydrogen into helium and generally being rather stable; staid even. That will
not always be the case. As the hydrogen fuel runs out in its core, and changes
begin in the fusion process, we expect it to swell into a red giant star,
lowering its surface temperature in the process. Exactly how this happens
depends on how much mass a star contains and its chemical composition. This is
where DR3 comes in.
Orlagh and colleagues combed the data
looking for the most accurate stellar observations that the spacecraft could
offer. “We wanted to have a really pure sample of stars with high precision
measurements,” says Orlagh.
They concentrated their efforts on stars
that have surface temperatures of between 3000K and 10 000K because these are
the longest-lived stars in the Galaxy and hence can reveal the history of the
Milky Way. They are also promising candidates for finding exoplanets because
they are broadly similar to the Sun, which has a surface temperature of 6000K.
Next, Orlagh and colleagues filtered the
sample to only show those stars that had the same mass and chemical composition
as the Sun. Since they allowed the age to be different, the stars they selected
ended up tracing out a line across the H-R diagram that represents the evolution
of our Sun from its past into its future. It revealed the way our star will
vary its temperature and luminosity as it ages.
From this work, it becomes clear that
our Sun will reach a maximum temperature at approximately 8 billion years of
age, then it will cool down and increase in size, becoming a red giant star
around 10–11 billion years of age. The Sun will reach the end of its life after
this phase, when it eventually becomes a dim white dwarf.
Finding stars similar to the Sun is
essential for understanding how we fit into the wider Universe. “If we don’t
understand our own Sun – and there are many things we don’t know about
it – how can we expect to understand all of the other stars that make up
our wonderful galaxy,” says Orlagh.
It is a source of some irony that the
Sun is our nearest, most studied star yet its proximity forces us to study it
with completely different telescopes and instruments from those that we use to
look at the rest of the stars. This is because the Sun is so much brighter than
the other stars. By identifying similar stars to the Sun, but this time with
similar ages, we can bridge this observational gap.
Source & GIF via ESA
Source: Gaia reveals the past and future of
the Sun – Scents of Science (myfusimotors.com)
No comments:
Post a Comment