Monday, May 31, 2021

NASA Rocket Mission Studying Escaping Radio Waves - UNIVERSE



A Terrier-Improved Malemute sounding rocket. Credits: NASA Wallops

A NASA rocket mission, launching May 26, 2021, will study radio waves that escape through the Earth’s ionosphere impacting the environment surrounding GPS and geosynchronous satellites, such as those for weather monitoring and communications.

Launching from NASA’s Wallops Flight Facility, a Terrier-Improved Malemute suborbital sounding rocket will carry the Vlf trans- Ionospheric Propagation Experiment Rocket, or VIPER. The mission is scheduled for 9:15 p.m., Wednesday, May 26. The launch window is 9:15 p.m. to midnight EDT and the backup days are May 27-28. The launch may be visible in the mid-Atlantic region.

VIPER is studying very low frequency radio, or VLF, waves that are produced by both natural (e.g. lightning) and artificial means. During the day these waves are trapped or absorbed by the Earth’s ionosphere. At night, however, some of the waves escape through the ionosphere and accelerate electrons in the Van Allen Radiation Belt.

“At night, the lower layers of the ionosphere are much less dense, and more of the VLF can leak through, propagate along the Earth's magnetic field lines, and end up interacting with the high energy electrons trapped in the Van Allen Radiation Belts,” said Dr. John Bonnell, the project’s principal investigator from the University of California, Berkeley.

“Those belts of intense energetic electron fluxes cover a range of distances from the Earth, from as close as 14,300 miles altitude (~4.4 Earth radii) out to 23,500 miles altitude (~7 Earth radii). GPS satellites orbit at around 4.4 Earth radii, and geosynchronous satellites at about 6.6 Earth radii. So, satellites in those orbits are often engulfed by the Van Allen Radiation Belts and have to tolerate the effects those energetic particles have on electronics and materials,” said Bonnell.

In addition to the in-situ measurements made by VIPER as it flies through the area of interest, the mission also will employ numerous ground-based systems, including those in Maine, North Carolina, Georgia, Colorado and Virginia.

This plot shows altitude profiles of VLF absorption, proportional to the local plasma density times the electron-neutral collision frequency. The blue profiles show the nighttime conditions relevant for VIPER, and the red profiles show daytime conditions.

Credits: University of Colorado Boulder/Robert Marshall


By making accurate measurements of the VLF electromagnetic fields and the properties of the ionosphere below, at, and above the absorption and reflection layers in the ionosphere, VIPER provides a novel data set for comparison with existing numerical models of the fields and the ionosphere, as well as observations made in the past of the escaping VLF radiation at higher altitudes and on the ground. 

“It was surprising to find that while lots of ground-based and orbital observations of the VLF absorption/reflections/transmission had been made, there's not been any measurements right in the region where all the action happens. While we have good models of what to expect in such regions, actual measurements are key to pin down the details of those models, as well as to develop the instruments required to explore more challenging regions,” said Bonnell. 

The two-stage Terrier-Improved Malemute rocket will carry the VIPER payload to an altitude of about 94 miles before descending and landing in the Atlantic Ocean. The payload will not be recovered.

NASA's Van Allen Probes Find Human-Made Bubble Shrouding Earth. Link to videohttps://svs.gsfc.nasa.gov/12591

Live coverage of the mission will be available on the Wallops IBM video site (previously Ustream) beginning at 8:55 p.m. on launch day.

The NASA Visitor Center at Wallops will not be open for launch viewing.

Keith Koehler
NASA’s Wallops Flight Facility, Virginia

Source: https://www.nasa.gov/wallops/2021/feature/nasa-rocket-mission-studying-escaping-radio-waves


Angelina Jolie On Weirdest Part of Being An Actor, TOMB RAIDER & THOSE WHO WISH ME DEAD | INTERVIEW

 

SUICIDE SQUAD (2016) | Armed To The Teeth Featurette

 

Short Film - Intruders (2017)

 

Storyline: In this neighborhood, two psychopaths choose their victims one way. Their lights are on.

Director: Mark Schaefer

Writer: Mark Schaefer

Cast: Ruth Reynolds, Michelle Merlino, Matt Conde, Lawrence Hemingway



Most Anticipated Streaming Titles in June 2021 - IMDb


 

Funny and Weird Clips (2353)




















 

Saturday, May 29, 2021

Salts Could Be Important Piece of Martian Organic Puzzle, NASA Scientists Find - UNIVERSE



A NASA team has found that organic salts are likely present on Mars. Like shards of ancient pottery, these salts are the chemical remnants of organic compounds, such as those previously detected by NASA’s Curiosity rover. Organic compounds and salts on Mars could have formed by geologic processes or be remnants of ancient microbial life.

Besides adding more evidence to the idea that there once was organic matter on Mars, directly detecting organic salts would also support modern-day Martian habitability, given that on Earth, some organisms can use organic salts, such as oxalates and acetates, for energy.

“If we determine that there are organic salts concentrated anywhere on Mars, we’ll want to investigate those regions further, and ideally drill deeper below the surface where organic matter could be better preserved,” said James M. T. Lewis, an organic geochemist who led the research, published on March 30 in the Journal of Geophysical Research: Planets. Lewis is based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

Lewis’s lab experiments and analysis of data from the Sample Analysis at Mars (SAM), a portable chemistry lab inside Curiosity’s belly, indirectly point to the presence of organic salts. But directly identifying them on Mars is hard to do with instruments like SAM, which heats Martian soil and rocks to release gases that reveal the composition of these samples. The challenge is that heating organic salts produces only simple gases that could be released by other ingredients in Martian soil.


What do you do if you have a sample from another planet, and you want to find out if it contains a certain molecule...maybe even one that will reveal whether the planet can sustain life? When scientists face a situation like this, they use an amazing tool: the mass spectrometer. It separates out materials, allowing scientists to look very closely at a sample and see what's inside.

Credits: NASA/Goddard Space Flight Center Download video here

However, Lewis and his team propose that another Curiosity instrument that uses a different technique to peer at Martian soil, the Chemistry and Mineralogy instrument, or CheMin for short, could detect certain organic salts if they are present in sufficient amounts. So far, CheMin has not detected organic salts.

Finding organic molecules, or their organic salt remnants, is essential in NASA’s search for life on other worlds. But this is a challenging task on the surface of Mars, where billions of years of radiation have erased or broken apart organic matter. Like an archeologist digging up pieces of pottery, Curiosity collects Martian soil and rocks, which may contain tiny chunks of organic compounds, and then SAM and other instruments identify their chemical structure.

Using data that Curiosity beams down to Earth, scientists like Lewis and his team try to piece together these broken organic pieces. Their goal is to infer what type of larger molecules they may once have belonged to and what those molecules could reveal about the ancient environment and potential biology on Mars.

“We’re trying to unravel billions of years of organic chemistry,” Lewis said, “and in that organic record there could be the ultimate prize: evidence that life once existed on the Red Planet.”

While some experts have predicted for decades that ancient organic compounds are preserved on Mars, it took experiments by Curiosity’s SAM to confirm this. For example, in 2018, NASA Goddard astrobiologist Jennifer L. Eigenbrode led an international team of Curiosity mission scientists who reported the detection of myriad molecules containing an essential element of life as we know it: carbon. Scientists identify most carbon-containing molecules as “organic.


Research scientist Dr. Jennifer Eigenbrode discusses the discovery of ancient organic molecules on Mars.

Credits: NASA's Goddard Space Flight Center/Dan Gallagher

Download this video in HD formats from NASA Goddard's Scientific Visualization Studio

“The fact that there’s organic matter preserved in 3-billion-year-old rocks, and we found it at the surface, is a very promising sign that we might be able to tap more information from better preserved samples below the surface,” Eigenbrode said. She worked with Lewis on this new study.

Analyzing Organic Salts in the Lab 

Decades ago, scientists predicted that organic compounds on Mars could be breaking down into salts. These salts, they argued, would be more likely to persist on the Martian surface than big, complex molecules, such as the ones that are associated with the functioning of living things.

If there were organic salts present in Martian samples, Lewis and his team wanted to find out how getting heated in the SAM oven could affect what types of gases they would release. SAM works by heating samples to upwards of 1,800 degrees Fahrenheit (1,000 degrees Celsius). The heat breaks apart molecules, releasing some of them as gases. Different molecules release different gases at specific temperatures; thus, by looking at which temperatures release which gases, scientists can infer what the sample is made of. 

“When heating Martian samples, there are many interactions that can happen between minerals and organic matter that could make it more difficult to draw conclusions from our experiments, so the work we’re doing is trying to pick apart those interactions so that scientists doing analyses on Mars can use this information,” Lewis said.

Lewis analyzed a range of organic salts mixed with an inert silica powder to replicate a Martian rock. He also investigated the impact of adding perchlorates to the silica mixtures. Perchlorates are salts containing chlorine and oxygen, and they are common on Mars. Scientists have long worried that they could interfere with experiments seeking signs of organic matter.


This is the first photo ever taken on the surface of Mars. It was taken by NASA’s Viking 1 spacecraft just minutes after it landed on the Red Planet on July 20, 1976.

Credits: Credits: NASA/JPL More information here.

Indeed, researchers found that perchlorates did interfere with their experiments, and they pinpointed how. But they also found that the results they collected from perchlorate-containing samples better matched SAM data than when perchlorates were absent, bolstering the likelihood that organic salts are present on Mars.

Additionally, Lewis and his team reported that organic salts could be detected by Curiosity’s instrument CheMin. To determine the composition of a sample, CheMin shoots X-rays at it and measures the angle at which the X-rays are diffracted toward the detector.

Curiosity’s SAM and CheMin teams will continue to search for signals of organic salts as the rover moves into a new region on Mount Sharp in Gale Crater.

Soon, scientists will also have an opportunity to study better-preserved soil below the Martian surface. The European Space Agency’s forthcoming ExoMars rover, which is equipped to drill down to 6.5 feet, or 2 meters, will carry a Goddard instrument that will analyze the chemistry of these deeper Martian layers. NASA’s Perseverance rover doesn’t have an instrument that can detect organic salts, but the rover is collecting samples for future return to Earth, where scientists can use sophisticated lab machines to look for organic compounds.

Banner image: This look back at a dune that NASA's Curiosity Mars rover drove across was taken by the rover's Mast Camera (Mastcam) on Feb. 9, 2014, or the 538th Martian day, or sol, of Curiosity's mission. For scale, the distance between the parallel wheel tracks is about 9 feet (2.7 meters). The dune is about 3 feet (1 meter) tall in the middle of its span across an opening called "Dingo Gap." This view is looking eastward. Credits: NASA/JPL-Caltech/MSSS. More information here.

May 20, 2021 By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Source: https://www.nasa.gov/feature/goddard/2021/salts-could-be-important-piece-of-martian-organic-puzzle-nasa-scientists-find-0


New research optimizes body’s own immune system to fight cancer



A groundbreaking study led by engineering and medical researchers at the University of Minnesota Twin Cities shows how engineered immune cells used in new cancer therapies can overcome physical barriers to allow a patient’s own immune system to fight tumors. The research could improve cancer therapies in the future for millions of people worldwide.

The research is published in Nature Communications, a peer-reviewed, open access, scientific journal published by Nature Research.

Instead of using chemicals or radiation, immunotherapy is a type of cancer treatment that helps the patient’s immune system fight cancer. T cells are a type of white blood cell that are of key importance to the immune system. Cytotoxic T cells are like soldiers who search out and destroy the targeted invader cells.

While there has been success in using immunotherapy for some types of cancer in the blood or blood-producing organs, a T cell’s job is much more difficult in solid tumors.

“The tumor is sort of like an obstacle course, and the T cell has to run the gauntlet to reach the cancer cells,” said Paolo Provenzano, the senior author of the study and a biomedical engineering associate professor in the University of Minnesota College of Science and Engineering. “These T cells get into tumors, but they just can’t move around well, and they can’t go where they need to go before they run out of gas and are exhausted.”

In this first-of-its-kind study, the researchers are working to engineer the T cells and develop engineering design criteria to mechanically optimize the cells or make them more “fit” to overcome the barriers. If these immune cells can recognize and get to the cancer cells, then they can destroy the tumor.

In a fibrous mass of a tumor, the stiffness of the tumor causes immune cells to slow down about two-fold — almost like they are running in quicksand.

“This study is our first publication where we have identified some structural and signaling elements where we can tune these T cells to make them more effective cancer fighters,” said Provenzano, a researcher in the University of Minnesota Masonic Cancer Center. “Every ‘obstacle course’ within a tumor is slightly different, but there are some similarities. After engineering these immune cells, we found that they moved through the tumor almost twice as fast no matter what obstacles were in their way.”

To engineer cytotoxic T cells, the authors used advanced gene editing technologies (also called genome editing) to change the DNA of the T cells so they are better able to overcome the tumor’s barriers. The ultimate goal is to slow down the cancer cells and speed up the engineered immune cells. The researchers are working to create cells that are good at overcoming different kinds of barriers. When these cells are mixed together, the goal is for groups of immune cells to overcome all the different types of barriers to reach the cancer cells.

Provenzano said the next steps are to continue studying the mechanical properties of the cells to better understand how the immune cells and cancer cells interact. The researchers are currently studying engineered immune cells in rodents and in the future are planning clinical trials in humans.

While initial research has been focused on pancreatic cancer, Provenzano said the techniques they are developing could be used on many types of cancers.

“Using a cell engineering approach to fight cancer is a relatively new field,” Provenzano said. “It allows for a very personalized approach with applications for a wide array of cancers. We feel we are expanding a new line of research to look at how our own bodies can fight cancer. This could have a big impact in the future.”

Source: https://twin-cities.umn.edu/news-events/new-research-optimizes-bodys-own-immune-system-fight-cancer

Journal article: https://www.nature.com/articles/s41467-021-22985-5

Image credit: Provenzano Group, University of Minnesota

Source: New research optimizes body’s own immune system to fight cancer – Scents of Science (myfusimotors.com)

Behind the scenes: Emilia Clarke talks Game of Thrones and transforming into Daenerys Targaryen - Harper's Bazaar UK

 

Short Clip - Alicia Vikander - Four Weddings & a Funeral sequel for (Red Nose Day)





Twenty-five years after the events of Fyra bröllop och en begravning (1994), Charles, Carrie, Fiona, Tom, David, Matthew, Bernard, Lydia and Father Gerald are back in church. But whose wedding is it - and will there be any more familiar faces?

Nature Strikes Back - Fails of the Week | FailArmy

 

STARSHIP TROOPERS (1997) | Death From Above Documentary (Part 1/3)

 

Funny and Weird Clips (2352)