Monday, October 31, 2022

Gel-Like, Radioactive Implant Obliterates Pancreatic Cancer in Mice


Biomedical engineers at Duke University have demonstrated the most effective treatment for pancreatic cancer ever recorded in mouse models. While most mouse trials consider simply halting growth a success, the new treatment completely eliminated tumors in 80 percent of mice across several model types, including those considered the most difficult to treat.

The approach combines traditional chemotherapy drugs with a new method for irradiating the tumor. Rather than delivering radiation from an external beam that travels through healthy tissue, the treatment implants radioactive iodine-131 directly into the tumor within a gel-like depot that protects healthy tissue and is absorbed by the body after the radiation fades away.

The results appear online October 19 in the journal Nature Biomedical Engineering.

“We did a deep dive through over 1,100 treatments across preclinical models and never found results where the tumors shrank away and disappeared like ours did,” said Jeff Schaal, who conducted the research during his PhD study in the laboratory of Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke. “When the rest of the literature is saying that what we’re seeing doesn’t happen, that’s when we knew we had something extremely interesting.”


Despite accounting for only 3.2 percent of all cancer cases, pancreatic cancer is the third leading cause of cancer-related death. It is very difficult to treat because its tumors tend to develop aggressive genetic mutations that make it resistant to many drugs, and it is typically diagnosed very late when it has already spread to other sites in the body.

The current leading treatment combines chemotherapy, which keeps cells in a stage of reproduction vulnerable to radiation for longer periods of time, with a beam of radiation targeted at the tumor. This approach, however, is ineffective unless a certain threshold of radiation reaches the tumor. And despite recent advances in shaping and targeting radiation beams, that threshold is very difficult to reach without risking severe side effects.

Another method researchers have tried involves implanting a radioactive sample encased in titanium directly within the tumor. But because titanium blocks all radiation other than gamma rays, which travel far outside the tumor, it can only remain within the body for a short period of time before damage to surrounding tissue begins to defeat the purpose.

“There’s just no good way to treat pancreatic cancer right now,” said Schaal, who is now director of research at Cereius, a Durham, NC, biotechnology startup working to commercialize a targeted radionuclide therapy through a different technology scheme.

To skirt these issues, Schaal decided to try a similar implantation method using a substance made of elastin-like polypeptides (ELPs), which are synthetic chains of amino acids bonded together to form a gel-like substance with tailored properties. Because ELPs are a focus of the Chilkoti lab, he was able to work with colleagues to design a delivery system well-suited for the task.

The ELPs exist in a liquid state at room temperature but form a stable gel-like substance within the warmer human body. When injected into a tumor along with a radioactive element, the ELPs form a small depot encasing radioactive atoms. In this case, the researchers decided to use iodine-131, a radioactive isotope of iodine, because doctors have used it widely in medical treatments for decades and its biological effects are well understood.

The ELP depot encases the iodine-131 and prevents it from leaking out into the body. The iodine-131 emits beta radiation, which penetrates the biogel and deposits almost all its energy into the tumor without reaching the surrounding tissue. Over time, the ELP depot degrades into its constituent amino acids and is absorbed by the body — but not before the iodine-131 has decayed into a harmless form of xenon.

“The beta radiation also improves the stability of the ELP biogel,” Schaal said. “That helps the depot last longer and only break down after the radiation is spent.”

In the new paper, Schaal and his collaborators in the Chilkoti laboratory tested the new treatment in concert with paclitaxel, a commonly used chemotherapy drug, to treat various mouse models of pancreatic cancer. They chose pancreatic cancer because of its infamy for being difficult to treat, hoping to show that their radioactive tumor implant creates synergistic effects with chemotherapy that relatively short-lived radiation beam therapy does not.

The researchers tested their approach on mice with cancers just under their skin created by several different mutations known to occur in pancreatic cancer. They also tested it on mice that had tumors within the pancreas, which is much more difficult to treat.

Overall, the tests saw a 100 percent response rate across all models, with the tumors being completely eliminated in three-quarters of the models about 80% of the time. The tests also revealed no immediately obvious side effects beyond what is caused by chemotherapy alone.

“We think the constant radiation allows the drugs to interact with its effects more strongly than external beam therapy allows,” Schaal said. “That makes us think that this approach might actually work better than external beam therapy for many other cancers, too.”

The approach, however, is still in its early preclinical stages and will not be available for human use anytime soon. The researchers say their next step is large animal trials, where they will need to show that the technique can be accurately done with the existing clinical tools and endoscopy techniques that doctors are already trained on. If successful, they look toward a Phase 1 clinical trial in humans.

“My lab has been working on developing new cancer treatments for close to 20 years, and this work is perhaps the most exciting we have done in terms of its potential impact, as late-stage pancreatic cancer is impossible to treat and is invariably fatal,” Chilkoti said. “Pancreatic cancer patients deserve better treatment options than are currently available, and I am deeply committed to taking this all the way into the clinic.”

Source: https://pratt.d

uke.edu/about/news/radioactive-tumor-implant

Journal article: https://www.nature.com/articles/s41551-022-00949-4

Source: Gel-Like, Radioactive Implant Obliterates Pancreatic Cancer in Mice – Scents of Science (myfusimotors.com)

TRY NOT TO LAUGH WATCHING FUNNY FAILS VIDEOS 2022 #238 - Daily Dose of Laughter

 

All About 'Ant-Man and the Wasp: Quantumania' - IMDb

 

Go Behind the Scenes of Underworld: Awakening (2012)

 

Funny and Weird Clips (2797)




















 

Saturday, October 29, 2022

NASA’s InSight Lander Detects Stunning Meteoroid Impact on Mars - UNIVERSE

Boulder-size blocks of water ice can be seen around the rim of an impact crater on Mars, as viewed by the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter. The crater was formed Dec. 24, 2021, by a meteoroid strike in the Amazonis Planitia region. Credits: NASA/JPL-Caltech/University of Arizona

The agency’s lander felt the ground shake during the impact while cameras aboard the Mars Reconnaissance Orbiter spotted the yawning new crater from space.

NASA’s InSight lander recorded a magnitude 4 marsquake last Dec. 24, but scientists learned only later the cause of that quake: a meteoroid strike estimated to be one of the biggest seen on Mars since NASA began exploring the cosmos. What’s more, the meteoroid excavated boulder-size chunks of ice buried closer to the Martian equator than ever found before – a discovery with implications for NASA’s future plans to send astronauts to the Red Planet.

Scientists determined the quake resulted from a meteoroid impact when they looked at before-and-after images from NASA’s Mars Reconnaissance Orbiter (MRO) and spotted a new, yawning crater. Offering a rare opportunity to see how a large impact shook the ground on Mars, the event and its effects are detailed in two papers published Thursday, Oct. 27, in the journal Science.

The impact crater, formed Dec. 24, 2021, by a meteoroid strike in the Amazonis Planitia region of Mars, is about 490 feet (150 meters) across, as seen in this annotated image taken by the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter. Credits: NASA/JPL-Caltech/University of Arizona

The meteoroid is estimated to have spanned 16 to 39 feet (5 to 12 meters) – small enough that it would have burned up in Earth’s atmosphere, but not in Mars’ thin atmosphere, which is just 1% as dense as our planet’s. The impact, in a region called Amazonis Planitia, blasted a crater roughly 492 feet (150 meters) across and 70 feet (21 meters) deep. Some of the ejecta thrown by the impact flew as far as 23 miles (37 kilometers) away.

With images and seismic data documenting the event, this is believed to be one of the largest craters ever witnessed forming any place in the solar system. Many larger craters exist on the Red Planet, but they are significantly older and predate any Mars mission.

“It’s unprecedented to find a fresh impact of this size,” said Ingrid Daubar of Brown University, who leads InSight’s Impact Science Working Group. “It’s an exciting moment in geologic history, and we got to witness it.”

InSight has seen its power drastically decline in recent months due to dust settling on its solar panels. The spacecraft now is expected to shut down within the next six weeks, bringing the mission’s science to an end.

This meteoroid impact crater on Mars was discovered using the black-and-white Context Camera aboard NASA’s Mars Reconnaissance Orbiter. The Context Camera took these before-and-after images of the impact, which occurred on Dec. 24, 2021, in a region of Mars called Amazonis Planitia. Credits: NASA/JPL-Caltech/MSSS

InSight is studying the planet’s crust, mantle, and core. Seismic waves are key to the mission and have revealed the size, depth, and composition of Mars’ inner layers. Since landing in November 2018, InSight has detected 1,318 marsquakes, including several caused by smaller meteoroid impacts.

But the quake resulting from last December’s impact was the first observed to have surface waves – a kind of seismic wave that ripples along the top of a planet’s crust. The second of the two Science papers related to the big impact describes how scientists use these waves to study the structure of Mars’ crust.

This video includes a seismogram and sonification of the signals recorded by NASA’s InSight Mars lander, which detected a giant meteoroid strike on Dec. 24, 2021, the 1,094th Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/CNES/Imperial College London

Crater Hunters

In late 2021, InSight scientists reported to the rest of the team they had detected a major marsquake on Dec. 24. The crater was first spotted on Feb. 11, 2022, by scientists working at Malin Space Science Systems (MSSS), which built and operates two cameras aboard MRO. The Context Camera (CTX) provides black-and-white, medium-resolution images, while the Mars Color Imager (MARCI) produces daily maps of the entire planet, allowing scientists to track large-scale weather changes like the recent regional dust storm that further diminished InSight’s solar power.

The impact’s blast zone was visible in MARCI data that allowed the team to pin down a 24-hour period within which the impact occurred. These observations correlated with the seismic epicenter, conclusively demonstrating that a meteoroid impact caused the large Dec. 24 marsquake.

“The image of the impact was unlike any I had seen before, with the massive crater, the exposed ice, and the dramatic blast zone preserved in the Martian dust,” said Liliya Posiolova, who leads the Orbital Science and Operations Group at MSSS. “I couldn’t help but imagine what it must have been like to witness the impact, the atmospheric blast, and debris ejected miles downrange.”

Establishing the rate at which craters appear on Mars is critical for refining the planet’s geologic timeline. On older surfaces, such as those of Mars and our Moon, there are more craters than on Earth; on our planet, the processes of erosion and plate tectonics erase older features from the surface.

New craters also expose materials below the surface. In this case, large chunks of ice scattered by the impact were viewed by MRO’s High-Resolution Imaging Science Experiment (HiRISE) color camera.

Subsurface ice will be a vital resource for astronauts, who could use it for a variety of needs, including drinking water, agriculture, and rocket propellant. Buried ice has never been spotted this close to the Martian equator, which, as the warmest part of Mars, is an appealing location for astronauts.


This animation depicts a flyover of a meteoroid impact crater on Mars that’s surrounded by boulder-size chunks of ice. The animation was created using data from the High-Resolution Imaging Science Experiment (HiRISE) camera aboard NASA’s Mars Reconnaissance Orbiter. Credits: NASA/JPL-Caltech/University of Arizona

More About the Missions

JPL manages InSight and the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the Mars Reconnaissance Orbiter, InSight spacecraft (including its cruise stage and lander), and supports spacecraft operations for both missions.

Malin Space Science Systems in San Diego built and operates the Context Camera and MARCI camera. University of Arizona built and operates the HiRISE camera.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors, and the Italian Space Agency (ASI) supplied a passive laser retroreflector.

Andrew Good, Jet Propulsion Laboratory, Pasadena, Calif.

Karen Fox / Erin Morton, NASA Headquarters, Washington

Source: NASA’s InSight Lander Detects Stunning Meteoroid Impact on Mars | NASA

Increased thermogenesis in fat cells during active period of circadian rhythm limits weight gain in mice


A team of researchers at Northwestern University, working with a pair of colleagues from the University of Texas, has found that an increase in thermogenesis in fat cells during active periods of the daily circadian rhythm can limit weight gain in mice. Their paper is published in the journal Science; Damien Lagarde and Lawrence Kazak with the Rosalind and Morris Goodman Cancer Institute at McGill University have published a Perspective piece in the same journal issue outlining the work by the team on this new effort. 

Prior research has shown that overeating during the inactive phase of the circadian rhythm in mice and humans can lead to higher levels of weight gain. Likewise, adhering to time-restricted feeding (TRF) can lead to less weight gain. But until now, why this happens has not been fully understood.

 

To learn more about the effects of a high-fat diet on mice over phases of the circadian rhythm, the researchers fed two groups of mice a high-fat diet. One group was fed during their active phase (when it was dark out) and the other was fed during their inactive phase (when it was light out.) They then took a close look at what was occurring in the fat cells of both groups.

The researchers found that the mice fed during their inactive phase gained more weight, as expected. But they also learned more about the factors behind such a weight gain. One of the biggest was thermogenesis, the process by which heat is generated in the body. They found that an increase in thermogenesis in fat cells during the active phase of the circadian rhythm (due to a boost in creatine in fat cells) was at least partly responsible for restricting weight gain.

They also found that a zinc finger protein can block the genes responsible for producing the chemicals that regulate thermogenesis by controlling production of adenosine triphosphate. They conclude that their work has helped to explain why TRF can play such an important role in weight management.


Source: https://medicalxpress.com/news/2022-10-thermogenesis-fat-cells-period-circadian.html

Journal article: https://www.science.org/doi/10.1126/science.abl8007

Source: Increased thermogenesis in fat cells during active period of circadian rhythm limits weight gain in mice – Scents of Science (myfusimotors.com)

Dominatrix Rates 9 Dominatrix Scenes In Movies & TV | How Real Is It? | Insider

 

Animals Unleashed! Funny and Scary Moments Compilation | FailArmy



 

Short Film - Mongrel (2022) - Sci-Fi

 

Celebrities Read Mean Tweets #13 - Jimmy Kimmel Live

 

THE PERIPHERAL Season 1 | Inside The Peripheral Featurette

 

Funny and Weird Clips (2796)