Friday, May 31, 2024

NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex - UNIVERSE

Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft show a trough on Dinkinesh where a large piece — about a quarter of the asteroid — suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.

Panels a, b, and c each show stereographic image pairs of the asteroid Dinkinesh taken by the NASA Lucy Spacecraft’s L’LORRI Instrument in the minutes around closest approach on Nov. 1, 2023. The yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach. NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab

“We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” said Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is lead author of a paper on these observations published May 29 in Nature.

On November 1, 2023, NASA’s Lucy spacecraft flew by the main-belt asteroid Dinkinesh. Now, the mission has released pictures from Lucy’s Long Range Reconnaissance Imager taken over a roughly three-hour period, providing the best views of the asteroid to date. During the flyby, Lucy discovered that Dinkinesh has a small moon, which the mission named “Selam,” a greeting in the Amharic language meaning “peace.” Lucy is the first mission designed to visit the Jupiter Trojans, two swarms of asteroids trapped in Jupiter’s orbit that may be “fossils” from the era of planet formation. Credit: NASA’s Goddard Space Flight Center. Download this video and more at: https://svs.gsfc.nasa.gov/14596/

Researchers think that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years rotating in the sunlight, the tiny forces coming from the thermal radiation emitted from the asteroid’s warm surface generated a small torque that caused Dinkinesh to gradually rotate faster, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely caused debris to enter into a close orbit, which became the raw material that produced the ridge and satellite.

Stereo movie of asteroid Dinkinesh from NASA’s Lucy spacecraft flyby on Nov. 1, 2023. NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni

If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it was able to hold together longer, more like a rock, with more strength than a fluid, eventually giving way under stress and fragmenting into large pieces. (Although the amount of strength needed to fragment a small asteroid like Dinkinesh is miniscule compared to most rocks on Earth.)

“The trough suggests an abrupt failure, more an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, project scientist for Lucy and a co-author of the paper.

“These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” said Levison. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.”

The researchers think some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious.

Stereo movie of Selam from NASA’s Lucy spacecraft flyby on Nov. 1, 2023. NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab/Brian May/Claudia Manzoni

Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. That close flyby will propel the spacecraft back through the main asteroid belt, where it will observe asteroid Donaldjohanson in 2025, and then on to the first of the encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun beginning in 2027.

Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program for the Science Mission Directorate at NASA Headquarters in Washington.

For more information about NASA’s Lucy mission, visit: https://science.nasa.gov/mission/lucy 

Source: NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex - NASA

Ornithologists discover world's largest hummingbird is actually two species

Measured against a typical nectar feeder, the size of a Giant Hummingbird is even more astonishing. Credit: Xiaoni Xu | Macaulay Library | Cornell Lab of Ornithology

The Giant Hummingbird of western South America is not one species but two, according to an international group of researchers. The northern population stays in the high Andes year-round while the southern population migrates from sea level up to 14,000 feet for the nonbreeding months. The two species appear identical. But looks deceive—their genomes and behaviors tell a different story.

A paper announcing the find was published in the journal Proceedings of the National Academy of Sciences.

"These are amazing birds," said lead author Jessie Williamson, a National Science Foundation Postdoctoral Fellow and Rose Postdoctoral Fellow at the Cornell Lab of Ornithology. "They're about eight times the size of a Ruby-throated Hummingbird. We knew that some Giant Hummingbirds migrated, but until we sequenced genomes from the two populations, we had never realized just how different they are."

"They are as different from each other as chimpanzees are from bonobos," said senior author Chris Witt at the University of New Mexico. "The two species do overlap on their high elevation wintering grounds. It's mind-boggling that until now nobody figured out the Giant Hummingbird mystery, yet these two species have been separate for millions of years."

At first, the research goal was simply to learn where the migratory population went—a journey tracked with geolocators and satellite transmitters. The researchers actually tracked eight individual hummingbirds migrating up to 5,200 miles from the Chilean coast up to the Andes of Peru and back. Williamson says that's one of the longest, if not the longest hummingbird migration in the world. The out-and-back journey is longer than the distance from New York City to Istanbul, Turkey. 

A Southern Giant Hummingbird takes flight with a geolocator backpack to track its migration. Credit: Jessie Williamson.

The authors say the shift in migratory behavior is what drove speciation, though there's no way to tell whether migratory behavior was gained by one species or lost by the other. Until now, there had been only one known species on this branch of the hummingbird family tree, while the Giant Hummingbird's closest relatives––the world's smallest hummingbirds––diversified into 165 distinct hummingbird species.

The researchers are proposing straightforward common names: Northern Giant Hummingbird and Southern Giant Hummingbird. The southern migrant species will retain the Latin name, Patagona gigas. The proposed scientific name for the resident northern population is Patagona chaski. "Chaski" is Quechua for "messenger." Quechua is the name for a family of Indigenous languages that spread from Peru to other neighboring countries.

The researchers relied on support and local knowledge from landowners and villages in Peru and Chile. Co-author Emil Bautista's village in Peru was a homebase for this project and the community supported the scientists' work. But even with more than 15 years of field experience, Bautista admits this fieldwork was the hardest he's ever done.

"Capturing Giant Hummingbirds is very challenging," he said. "They watch everything and they know their territories well. We had to be strategic in choosing sites for our nets. If Giant Hummingbirds see something unusual, they won't visit that spot. They are more observant than other birds."

Elevational ascent of a Giant Hummingbird, illustrated by high-resolution Argos satellite tracking data. During a period of 21 days, the bird showed bursts of ascent interspersed with pauses and even slight downward movements. The bird stopped at mid-elevations to acclimatize before ascending the high peaks of the Andes. Credit: Jessie Williamson.

Right now, Giant Hummingbird populations, north and south, are stable and the species are common within their ranges—some even visit backyard nectar feeders. The team plans to continue research on these enigmatic birds.

"We have to figure out where these two forms come together and how they interact," said Witt. "Do they compete, is one dominant over the other, how might they partition resources, and do they mix or spatially segregate within the winter range? Lots of interesting questions to pursue!"

"I'm really interested in how Southern Giant Hummingbirds make such dramatic shifts in elevation during migration. They travel from sea level to the high Andes in just a few weeks," said Williamson. "They're like miniature mountain climbers. How do they change their physiology to facilitate these movements?" 

by Cornell University

Source: Ornithologists discover world's largest hummingbird is actually two species (phys.org)

Taking EarthCARE into orbit - European Space Agency, ESA

 

FUNNY Reactions Compilation 🤣 - FailArmy

 

Short Film - The Last Haw (2022) - Comedy - Sci-Fi - Western


 

Making of FALLOUT | Crafting the Apocalypse

 

Funny and Weird Clips (3290)
















 

Thursday, May 30, 2024

Discovery Alert: Spock’s Home Planet Goes ‘Poof’ - UNIVERSE

Artist's concept of a previously proposed possible planet, HD 26965 b – often compared to the fictional "Vulcan" in the Star Trek universe. Credit: JPL-Caltech

The discovery

A planet thought to orbit the star 40 Eridani A – host to Mr. Spock’s fictional home planet, Vulcan, in the “Star Trek” universe – is really a kind of astronomical illusion caused by the pulses and jitters of the star itself, a new study shows.

Key facts

The possible detection of a planet orbiting a star that Star Trek made famous drew excitement and plenty of attention when it was announced in 2018. Only five years later, the planet appeared to be on shaky ground when other researchers questioned whether it was there at all. Now, precision measurements using a NASA-NSF instrument, installed a few years ago atop Kitt Peak in Arizona, seem to have returned the planet Vulcan even more definitively to the realm of science fiction.

Details

Two methods for detecting exoplanets – planets orbiting other stars – dominate all others in the continuing search for strange new worlds. The transit method, watching for the tiny dip in starlight as a planet crosses the face of its star, is responsible for the vast majority of detections. But the “radial velocity” method also has racked up a healthy share of exoplanet discoveries. This method is especially important for systems with planets that don’t, from Earth’s point of view, cross the faces of their stars. By tracking subtle shifts in starlight, scientists can measure “wobbles” in the star itself, as the gravity of an orbiting planet tugs it one way, then another. For very large planets, the radial velocity signal mostly leads to unambiguous planet detections. But not-so-large planets can be problematic.

Even the scientists who made the original, possible detection of planet HD 26965 b – almost immediately compared to the fictional Vulcan – cautioned that it could turn out to be messy stellar jitters masquerading as a planet. They reported evidence of a “super-Earth” – larger than Earth, smaller than Neptune – in a 42-day orbit around a Sun-like star about 16 light-years away. The new analysis, using high-precision radial velocity measurements not yet available in 2018, confirms that caution about the possible discovery was justified.

The bad news for Star Trek fans comes from an instrument known as NEID, a recent addition to the complex of telescopes at Kitt Peak National Observatory. NEID, like other radial velocity instruments, relies on the “Doppler” effect: shifts in the light spectrum of a star that reveal its wobbling motions. In this case, parsing out the supposed planet signal at various wavelengths of light, emitted from different levels of the star’s outer shell, or photosphere, revealed significant differences between individual wavelength measurements – their Doppler shifts – and the total signal when they were all combined. That means, in all likelihood, the planet signal is really the flickering of something on the star’s surface that coincides with a 42-day rotation – perhaps the roiling of hotter and cooler layers beneath the star’s surface, called convection, combined with stellar surface features such as spots and “plages,” which are bright, active regions. Both can alter a star’s radial velocity signals.

While the new finding, at least for now, robs star 40 Eridani A of its possible planet Vulcan, the news isn’t all bad. The demonstration of such finely tuned radial velocity measurements holds out the promise of making sharper observational distinctions between actual planets and the shakes and rattles on surfaces of distant stars.

Fun facts

Even the destruction of Vulcan has been anticipated in the Star Trek universe. Vulcan was first identified as Spock’s home planet in the original 1960s television series. But in the 2009 film, “Star Trek,” a Romulan villain named Nero employs an artificial black hole to blow Spock’s home world out of existence.

The discoverers

A science team led by astronomer Abigail Burrows of Dartmouth College, and previously of NASA’s Jet Propulsion Laboratory, published a paper describing the new result, “The death of Vulcan: NEID reveals the planet candidate orbiting HD 26965 is stellar activity,” in The Astronomical Journal in May 2024 (Note: HD 26965 is an alternate designation for the star, 40 Eridani A.) 

Source: Discovery Alert: Spock’s Home Planet Goes ‘Poof’ - NASA Science 

NASA’s Chandra Notices the Galactic Center is Venting - UNIVERSE


X-ray: NASA/CXC/Univ. of Chicago/S.C. Mackey et al.; Radio: NRF/SARAO/MeerKAT; Image Processing: NASA/CXC/SAO/N. Wolk

These images show evidence for an exhaust vent attached to a chimney releasing hot gas from a region around the supermassive black hole at the center of the Milky Way, as reported in our latest press release. In the main image of this graphic, X-rays from NASA’s Chandra X-ray Observatory (blue) have been combined with radio data from the MeerKAT telescope (red).

Previously, astronomers had identified a “chimney” of hot gas near the Galactic Center using X-ray data from Chandra and ESA’s XMM-Newton. Radio emission detected by MeerKAT shows the effect of magnetic fields enclosing the gas in the chimney.

The evidence for the exhaust vent is highlighted in the inset, which includes only Chandra data. Several X-ray ridges showing brighter X-rays appear in white, roughly perpendicular to the plane of the Galaxy. Researchers think these are the walls of a tunnel, shaped like a cylinder, which helps funnel hot gas as it moves upwards along the chimney and away from the Galactic Center.

A labeled version of the image gives the locations of the exhaust vent, the chimney, the supermassive black hole at the center of the Milky Way Galaxy (called Sagittarius A*, or Sgr A* for short) and the plane of the galaxy.

X-ray: NASA/CXC/Univ. of Chicago/S.C. Mackey et al.; Radio: NRF/SARAO/MeerKAT; Image Processing: NASA/CXC/SAO/N. Wolk

This newly discovered vent is located near the top of the chimney about 700 light-years from the center of the Galaxy. To emphasize the chimney and exhaust vent features the image has been rotated by 180 degrees from the conventional orientation used by astronomers, so that the chimney is pointed upwards.

The authors of the new study think that the exhaust vent formed when hot gas rising through the chimney struck cooler gas lying in its path. The brightness of the exhaust vent walls in X-rays is caused by shock waves — similar to sonic booms from supersonic planes — generated by this collision. The left side of the exhaust vent is likely particularly bright in X-rays because the gas flowing upwards is striking the tunnel wall at a more direct angle and with more force than other regions.

The researchers determined that the hot gas is most likely coming from a sequence of events involving material falling towards Sgr A*. They think eruptions from the black hole then drove the gas upwards along the chimneys, and out through the exhaust vent.

It is unclear how often material is falling onto Sgr A*. Previous studies have indicated that dramatic X-ray flares take place every few hundred years at or near the location of the central black hole, so those could play important roles in driving the hot gas upwards through the exhaust vent. Astronomers also estimate that the Galactic black hole rips apart and swallows a star every 20,000 years or so. Such events would lead to powerful, explosive releases of energy, much of which would be destined to rise through the chimney vent.

The paper describing these results is published in The Astrophysical Journal and a preprint is available online. The authors of the paper are Scott Mackey (University of Chicago), Mark Morris (University of California, Los Angeles), Gabriele Ponti (Italian National Institute of Astrophysics in Merate ), Konstantina Anastasopoulou (Italian National Institute of Astrophysics in Palermo), and Samaresh Mondal (Italian National Institute of Astrophysics in Merate).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This image shows a region near the center of our Milky Way galaxy in X-ray and radio light. At the bottom of the image, near the center, is a brilliant, tangled knot of material that resembles a paint splatter. This is the brightest region in the image, and it contains the supermassive black hole at center of our galaxy, known as Sagittarius A*.

The lower third of the image resembles an angry firestorm. Streaks of red and orange are scattered in every direction, as if a legion of embers from a fire crackled and popped into the air all at once. Flame-like structures lick toward the center from our right.

Much of the image is infused with wispy blue clouds showing X-rays detected by Chandra. At a few points, the wispy blue clouds seem to form into balls of teal colored light and are known as dust halos. They are caused by X-rays from bright X-ray sources reflecting off dust surrounding the sources. These dust halos resemble underwater lights glowing in a cloudy swimming pool at night.

Rising up from Sagittarius A* in the center of the image is a pillar of blue light referred to as a chimney. This chimney of hot gas is surrounded by red clouds that are filled with stars, presenting themselves as tiny red flecks. Near the top of the blue pillar is a streak of light blue, outlined by an illustrated, gray box. This streak is referred to as the chimney exhaust vent. Just to our left is another illustrated box that shows the close-up image of the chimney vent as observed by Chandra.  

Source: NASA's Chandra Notices the Galactic Center is Venting - NASA

Robot Atlas: Artificial Intelligence, Uniqueness and Performance of Boston Dynamics' Coolest Robot - PRO ROBOTS

 

Short Film - Uber for Sandworms - Corridor

 

DUNE PART TWO Behind The Scenes #6 (2024) Sci-Fi

 

Funny and Weird Clips (3289)