Monday, January 2, 2017

From Psychedelics To Alzheimer's, 2016 Was A Good Year For Brain Science - NEUROSCIENCE


In July, a group from the University of Virginia published a study in Nature showing that the immune system, in addition to protecting us from a daily barrage of potentially infectious microbes, can also influence social behavior. The researchers had previously shown that a type of white blood cells called T cells influence learning behavior in mice by communicating with the brain. Now they've shown that blocking T cell access to the brain influences rodent social preferences.

Major advances were also made this year in joining human with machine. In October 2015, Hanneke de Bruijne, a 58 year old Dutch woman with Lou Gehrig's disease, received a brain implant that would allow her to communicate simply by thinking.

The new therapy, which comes on the heels of similar work out of East Tennessee State University, was developed by a team from the University Medical Center Utrecht in collaboration with Medtronic. It consists of four electrodes implanted over the motor region of the brain that connect to a wireless transmitter implanted in the chest. After 28 weeks of training, the device was able to recognize brain activity patterns that occur with thinking about typing a particular letter. Though de Bruijne's muscles still can't move, this brain-computer interface can now translate her brain waves — or her "thoughts" — into text.

Among the biggest neuroscience drug advances of the year was the Food and Drug Administration's Dec. 23 approval of Biogen's Spinraza, or nusinersen, the first treatment for spinal muscular atrophy.

Spinal muscular atrophy is the No. 1 genetic cause of death in infants. Those affected by the devastating disorder carry a gene mutation that renders them unable to produce a protein essential to survival of neurons in the spinal cord. Gradually stripped of their abilities to walk, eat and breathe, most children struck with the disease don't make it past 2 years old.

Spinraza is a gene therapy that boosts the production of the essential protein. Despite possible side effects, which include bleeding complications, kidney toxicity and infection, the drug appears to work so well that two recent clinical trials were stopped early, as it was deemed unethical to withhold treatment from babies assigned to placebo groups.

The Alzheimer's disease community also received welcome news this year. After hundreds of failed trials of potential treatments over the past couple of decades, the experimental drug aducanumab, also produced by Biogen, was found in early trials to slow the cognitive decline that comes with Alzheimer's.

And then there was the ongoing resurgence of psychedelic medicine.
It's been pretty well established that the hallucinogenic anesthetic ketamine may be an effective antidepressant. Now we have some potentially groundbreaking findings for psilocybin, the active compound in "magic mushrooms." Two clinical trials found that just a single high dose of the drug is effective at treating symptoms of both depression and anxiety in late stage cancer patients.

The list of neuroscientific advances from the past 12 months goes on: The Human Connectome Project gave us the most complete map of the cerebral cortex to date; a Canadian group revealed in part how fear memories are formed; scientists at Mount Sinai charted the neurocircuitry behind social aggression.


Story via NPR
http://www.npr.org/sections/health-shots/2016/12/31/507133144/from-psychedelics-to-alzheimers-2016-was-a-good-year-for-brain-science

References:http://www.nature.com/nature/journal/v535/n7612/abs/nature18626.html
http://www.nejm.org/doi/full/10.1056/NEJMoa1608085
http://science.sciencemag.org/content/354/6318/1359
Corina Marinescu

No comments:

Post a Comment