Thursday, January 11, 2018

How neurons sense our everyday life - NEUROSCIENCE

Researchers from King’s College London have discovered a molecular mechanism that enables neuronal connections to change through experience, thus fueling learning and memory formation. The findings are published in the journal Neuron and have the potential to reveal new therapeutic strategies for neurological and psychiatric disorders.

One of the most remarkable features of our brain is its ability to sense and interpret the complex environment of everyday life. To accomplish this, brain circuits undergo a process that involves experience-dependent plasticity, a fundamental mechanism through which the nervous system adapts to sensory experience and which is at the root of our capacity to learn as well as encode and retain memories. As an example, all babies are born with the capacity to develop language but their ability to communicate verbally will depend on their exposure to language during the early stages of development.

Impairment of experience-dependent plasticity has been shown to be a feature of many neurological and psychiatric disorders including depression, bipolar disorder and schizophrenia. As such, unravelling key molecular players in this form of plasticity may pave the way for new treatments.

Previous studies have shown that a special group of neurons present in the cerebral cortex called PV+ interneurons (a population of neurons that communicate with each other through deactivating chemical and electrical signals and express a protein called parvalbumin), are able to change in response to stimulus from the environment. However, until now the cellular and molecular mechanisms regulating this adaptability were largely unknown.

In their new study, the multidisciplinary team of researchers led by the Centre for Developmental Neurobiology (CDN) and MRC Centre for Neurodevelopmental Disorders (MRC CNDD) at the Institute of Psychiatry, Psychology & Neuroscience, found that this adaptability is shaped by a specific protein called Brevican. Moreover, loss of this protein leads to deficits in short-term spatial memory, the part of memory responsible for remembering different locations as well as spatial relations between objects.


Journal article:
Source: Corina Marinescu

No comments:

Post a Comment