NASA’s Double Asteroid Redirection Test (DART), the world’s first full-scale mission to test technology for defending Earth against potential asteroid or comet hazards, launched Wednesday at 1:21 a.m. EST on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
Just one part of NASA’s larger planetary defense
strategy, DART – built and managed by the Johns Hopkins Applied Physics
Laboratory (APL) in Laurel, Maryland – will impact a known asteroid that is not
a threat to Earth. Its goal is to slightly change the asteroid’s motion in a
way that can be accurately measured using ground-based telescopes.
DART will show that a spacecraft can autonomously
navigate to a target asteroid and intentionally collide with it – a method of
deflection called kinetic impact. The test will provide important data to help
better prepare for an asteroid that might pose an impact hazard to Earth, should
one ever be discovered. LICIACube, a CubeSat riding with DART and provided by
the Italian Space Agency (ASI), will be released prior to DART’s impact to
capture images of the impact and the resulting cloud of ejected matter. Roughly
four years after DART’s impact, ESA’s (European Space Agency) Hera project will
conduct detailed surveys of both asteroids, with particular focus on the crater
left by DART’s collision and a precise determination of Dimorphos’ mass.
“DART is turning science fiction into science fact and
is a testament to NASA’s proactivity and innovation for the benefit of all,”
said NASA Administrator Bill Nelson. “In addition to all the ways NASA studies
our universe and our home planet, we’re also working to protect that home, and
this test will help prove out one viable way to protect our planet from a
hazardous asteroid should one ever be discovered that is headed toward Earth.”
At 2:17 a.m., DART separated from the second
stage of the rocket. Minutes later, mission operators received the first
spacecraft telemetry data and started the process of orienting the spacecraft
to a safe position for deploying its solar arrays. About two hours later, the
spacecraft completed the successful unfurling of its two, 28-foot-long,
roll-out solar arrays. They will power both the spacecraft and NASA’s Evolutionary Xenon Thruster – Commercial ion
engine, one of several technologies being tested
on DART for future application on space missions.
“At its core, DART is a mission of preparedness, and
it is also a mission of unity,” said Thomas Zurbuchen, associate administrator
for the Science Mission Directorate at NASA Headquarters in Washington. “This
international collaboration involves DART, ASI’s LICIACube, and ESA’s Hera
investigations and science teams, which will follow up on this groundbreaking
space mission.”
DART’s one-way trip is to the Didymos asteroid system,
which comprises a pair of asteroids. DART’s target is the moonlet, Dimorphos,
which is approximately 530 feet (160 meters) in diameter. The moonlet orbits
Didymos, which is approximately 2,560 feet (780 meters) in diameter.
Since Dimorphos orbits Didymos at much a slower relative
speed than the pair orbits the Sun, the result of DART’s kinetic impact within
the binary system can be measured much more easily than a change in the orbit
of a single asteroid around the Sun.
“We have not yet found any significant asteroid impact
threat to Earth, but we continue to search for that sizable population we know
is still to be found. Our goal is to find any possible impact, years to decades
in advance, so it can be deflected with a capability like DART that is possible
with the technology we currently have,” said Lindley Johnson, planetary defense
officer at NASA Headquarters. “DART is one aspect of NASA’s work to prepare
Earth should we ever be faced with an asteroid hazard. In tandem with this
test, we are preparing the Near-Earth Object Surveyor Mission, an space-based
infrared telescope scheduled for launch later this decade and designed to
expedite our ability to discover and characterize the potentially hazardous
asteroids and comets that come within 30 million miles of Earth’s orbit.”
The spacecraft will intercept the Didymos system
between Sept. 26 and Oct. 1, 2022, intentionally slamming into Dimorphos at
roughly 4 miles per second (6 kilometers per second). Scientists estimate the
kinetic impact will shorten Dimorphos’ orbit around Didymos by several minutes.
Researchers will precisely measure that change using telescopes on Earth. Their
results will validate and improve scientific computer models critical to
predicting the effectiveness of the kinetic impact as a reliable method for
asteroid deflection.
“It is an indescribable feeling to see something
you’ve been involved with since the ‘words on paper’ stage become real and
launched into space,” said Andy Cheng, one of the DART investigation leads at
Johns Hopkins APL and the individual who came up with the idea of DART. “This
is just the end of the first act, and the DART investigation and engineering
teams have much work to do over the next year preparing for the main event ─
DART’s kinetic impact on Dimorphos. But tonight we celebrate!”
DART’s single instrument, the Didymos Reconnaissance
and Asteroid Camera for Optical navigation (DRACO), will turn on a week from
now and provide first images from the spacecraft. DART will continue to travel
just outside of Earth’s orbit around the Sun for the next 10 months until
Didymos and Dimorphos will be a relatively close 6.8 million miles (11 million
kilometers) from Earth.
A sophisticated guidance, navigation, and control
system, working together with algorithms called Small-body Maneuvering
Autonomous Real Time Navigation (SMART Nav), will enable the DART spacecraft to
identify and distinguish between the two asteroids. The system will then direct
the spacecraft toward Dimorphos. This process will all occur within roughly an
hour of impact.
Johns Hopkins APL manages the DART mission for NASA's
Planetary Defense Coordination Office as a project of the agency’s Planetary
Missions Program Office. NASA provides support for the mission from several
centers, including the Jet Propulsion Laboratory in Southern California,
Goddard Space Flight Center in Greenbelt, Maryland, Johnson Space Center in
Houston, Glenn Research Center in Cleveland, and Langley Research Center in
Hampton, Virginia. The launch is managed by NASA’s Launch Services Program, based
at the agency’s Kennedy Space Center in Florida. SpaceX is the launch
services provider for the DART mission.
For more information about the DART mission, visit: https://www.nasa.gov/dartmission
Source: https://www.nasa.gov/press-release/nasa-spacex-launch-dart-first-test-mission-to-defend-planet-earth
No comments:
Post a Comment