Scientists think that these bands of rocks may have been formed by a very fast, deep river – the first of its kind evidence has been found for on Mars. NASA’s Perseverance Mars rover captured this scene at a location nicknamed “Skrinkle Haven” using its Mastcam-Z camera between Feb. 28 and March 9, 2023. Credits: NASA/JPL-Caltech/ASU/MSSS
Evidence left in rocks is leading scientists to rethink what
watery environments looked like on ancient Mars.
New images taken by
NASA’s Perseverance rover may show signs of what was once a rollicking river on
Mars, one that was deeper and faster-moving than scientists have ever seen
evidence for in the past. The river was part of a network of waterways that
flowed into Jezero Crater, the area the rover has been exploring since landing
more than two years ago.
Understanding these watery environments
could help scientists in their efforts to seek out signs of ancient microbial life that may have been preserved in
Martian rock.
Perseverance is exploring the top of a
fan-shaped pile of sedimentary rock that stands 820 feet (250 meters) tall and
features curving layers suggestive of flowing water. One question scientists
want to answer is whether that water flowed in relatively shallow streams –
closer to what NASA’s Curiosity rover has found evidence of in Gale Crater – or a more powerful river system.
Stitched together from hundreds of images
captured by Perseverance’s Mastcam-Z instrument, two new mosaics suggest
the latter, revealing important clues: coarse sediment grains and cobbles.
“Those indicate a high-energy river that’s
truckin’ and carrying a lot of debris. The more powerful the flow of water, the
more easily it’s able to move larger pieces of material,” said Libby Ives, a
postdoctoral researcher at NASA’s Jet Propulsion Laboratory in Southern
California, which operates the Perseverance rover. With a background in
studying Earth-based rivers, Ives has spent the last six months analyzing images
of the Red Planet’s surface. “It’s been a delight to look at rocks on another
planet and see processes that are so familiar,” Ives said.
Following
the Curves
Years ago, scientists noticed a series of
curving bands of layered rock within Jezero Crater that they dubbed “the
curvilinear unit.” They could see these layers from space but are finally able
to see them up close, thanks to Perseverance.
One location within the curvilinear unit,
nicknamed “Skrinkle Haven,” is captured in one of the new Mastcam-Z mosaics.
Scientists are sure the curved layers here were formed by powerfully flowing
water, but Mastcam-Z’s detailed shots have left them debating what kind: a
river such as the Mississippi, which winds snakelike across the landscape, or a braided river like Nebraska’s Platte, which forms small
islands of sediment called sandbars.
NASA’s Perseverance Mars rover captured this mosaic of a hill nicknamed “Pinestand.” Scientists think the tall sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river. Credits: NASA/JPL-Caltech/ASU/MSSS
When viewed from the ground, the
curved layers appear arranged in rows that ripple out across the landscape.
They could be the remnants of a river’s banks that shifted over time – or the
remnants of sandbars that formed in the river. The layers were likely much
taller in the past. Scientists suspect that after these piles of sediment
turned to rock, they were sandblasted by wind over the eons and carved down to
their present size.
“The wind has acted like a scalpel
that has cut the tops off these deposits,” said Michael Lamb of Caltech, a
river specialist and Perseverance science team collaborator. “We do see
deposits like this on Earth, but they’re never as well exposed as they are here
on Mars. Earth is covered in vegetation that hides these layers.”
A second mosaic captured by
Perseverance shows a separate location that is part of the curvilinear unit and
about a quarter mile (450 meters) from Skrinkle Haven. “Pinestand” is an
isolated hill bearing sedimentary layers that curve skyward, some as high as 66
feet (20 meters). Scientists think these tall layers may also have been formed
by a powerful river, although they’re exploring other explanations, as well.
“These layers are anomalously tall
for rivers on Earth,” Ives said. “But at the same time, the most common way to
create these kinds of landforms would be a river.”
The team is continuing to study
Mastcam-Z’s images for additional clues. They’re also peering below the
surface, using the ground-penetrating radar instrument on Perseverance
called RIMFAX (short for Radar Imager for
Mars’ Subsurface Experiment). What they learn from both instruments will
contribute to an ever-expanding body of knowledge about Mars’ ancient, watery
past.
“What’s exciting here is we’ve
entered a new phase of Jezero’s history. And it’s the first time we’re seeing
environments like this on Mars,” said Perseverance’s deputy project scientist,
Katie Stack Morgan of JPL. “We’re thinking about rivers on a different scale
than we have before.”
More About the Mission
A key objective for Perseverance’s
mission on Mars is astrobiology, including the search for signs of ancient microbial
life. The rover will characterize the planet’s geology and past climate, pave
the way for human exploration of the Red Planet, and be the first mission to collect
and cache Martian rock and regolith (broken rock and dust).
Subsequent NASA missions, in
cooperation with ESA (European Space Agency), would send spacecraft to Mars to
collect these sealed samples from the surface and return them to Earth for
in-depth analysis.
The Mars 2020 Perseverance mission
is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that
will help prepare for human exploration of the Red Planet.
JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
For more about Perseverance: mars.nasa.gov/mars2020/
Source: Images
From NASA’s Perseverance May Show Record of Wild Martian River | NASA
No comments:
Post a Comment