Monday, July 31, 2023

NASA's TROPICS Offers Multiple Views of Intensifying Hurricanes - EARTH


NASA's newest storm-watching satellites have collected their first views of hurricanes, offering scientists a new tool for understanding the inner workings of storms over shorter time spans.

Data from the TROPICS mission — short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats — will help weather researchers learn more about the environmental factors contributing to hurricane structure and intensity. Such information could prove useful for NOAA, the U.S. Joint Typhoon Warning Center, and international agencies responsible for developing hurricane, typhoon, and cyclone forecasts.

This animation shows the evolution of Hurricane Adrian between 8:31 a.m. local time on June 28, 2023, and 4:18 p.m. local time on June 29, 2023. Data for the animation were acquired by the TROPICS mission, NASA’s newest constellation of storm-watching satellites. Credits: NASA Earth Observatory images by Lauren Dauphin, using data provided by the TROPICS team.

“As communities throughout the world are experiencing the growing impacts of increased extreme weather, it’s never been more important to get timely data to those who need it most to save livelihoods and lives,” said NASA Administrator Bill Nelson. “TROPICS will deliver vital information for forecasters, helping us all better prepare for hurricanes and tropical storms.”

In late June 2023, the TROPICS mission acquired data for images of the first named storms of the Eastern Pacific hurricane season. Hurricane Adrian developed near the west coast of Mexico but steered away from land. The animation and stills show the evolution of the storm's clouds from the morning of June 28 to the afternoon of June 29. (The images shown were curated from nearly two dozen taken by the satellites in that time.) Nearby, Beatriz was developing into a tropical storm, visible in these images as the less-organized clouds closer to the coast.   

TROPICS is a constellation of four identical CubeSats designed to observe tropical cyclones. The cost-effective, milk carton-sized satellites were launched in May 2023 by Rocket Lab. Each TROPICS CubeSat contains a microwave radiometer that collects data across 12 channels to detect temperatures, moisture, and precipitation around and within a storm.

The images in the animation were built from data collected by a single channel (205 gigahertz) that is sensitive to ice in the clouds. Each scene shows brightness temperature; that is, the intensity of radiation detectable at that channel frequency moving upward from the cloud layers and toward the satellites.

Cold brightness temperatures (blue) represent radiation that has been scattered by ice particles in the storm clouds. The colder the temperature, the more ice there is likely to be in a column of the atmosphere. Ice in the clouds is an indication of intense movement of heat and moisture (convection) in a storm, noted Will McCarty, program scientist for TROPICS and program manager for weather and atmospheric dynamics at NASA Headquarters.

Scott Braun, a research meteorologist at NASA’s Goddard Space Flight Center and project scientist for TROPICS, explained that patterns observed in the brightness temperature data can indicate the location of rain bands, the intensity of convection, whether the storm has formed an eye, and how those structures are changing over time. All are important to understanding how storms will evolve.

This series of still images, produced with data acquired by TROPICS, shows structural changes within Hurricane Adrian as the storm intensified. Credits: NASA Earth Observatory images by Lauren Dauphin, using data provided by the TROPICS team.

“Structural changes in brightness temperature can help tell us whether a storm is intensifying or weakening,” said Patrick Duran, the mission’s deputy program applications lead at NASA’s Marshall Space Flight Center. These structural changes are less apparent in natural-color images, which primarily show the tops of clouds. And some features, such as the eye, often show up in microwave images before they are detected by infrared sensors on other satellites.

Similar microwave measurements can be made with other satellites, such as the Global Precipitation Measurement (GPM) mission. TROPICS, however, has a time advantage. Whereas the orbits of most science satellites only permit observations of a storm every 6 to 12 hours hours, the low-Earth orbit and multiple satellites of TROPICS can allow storm imaging about once an hour. That’s a big advantage when trying to understand a rapidly evolving storm.

“The high-revisit observations from TROPICS show detailed structure in the inner eye and rain bands of tropical cyclones,” said William Blackwell, the mission’s principal investigator at MIT’s Lincoln Laboratory. “Rapidly updated data provided by TROPICS uniquely show the dynamic evolution of the storm structure and environmental conditions.”

Some of these structural changes are apparent in the animation and image series. The first frame of the animation shows the storm’s developing eye, visible as the warmer area surrounded by cooler areas associated with clouds and precipitating ice. Around the time of this image, NOAA's National Hurricane Center had recently upgraded Adrian from a tropical storm to a category 1 hurricane. It continued to strengthen and remained a category 1 storm throughout this image series.

In the second frame, a smaller coverage of cool temperatures indicates weakening convection, especially in the eyewall. By frame three, the eyewall shows stronger convection, and the eye appears smaller, which often occurs as a storm intensifies. By the fifth frame, strong convection is apparent south of the eye, a new rainband has developed on the north side, and the eye reaches its smallest size seen in the image series.


Story by Kathryn Hansen
NASA's Earth Observatory

Source: NASA's TROPICS Offers Multiple Views of Intensifying Hurricanes | NASA

Tiny surgical robots could transform detection and treatment of cancers

Robotic platform for peripheral lung tumor intervention based on magnetic tentacles. Credit: STORM Lab, University of Leeds

A tiny robot which can travel deep into the lungs to detect and treat the first signs of cancer has been developed by researchers at the University of Leeds.

The ultra-soft tentacle, which measures just 2 millimeters in diameter and is controlled by magnets, can reach some of the smallest bronchial tubes and could transform the treatment of lung cancer.

It paves the way for a more accurate, tailored, and far less invasive approach to treatment and has been developed by engineers, scientists and clinicians based at the STORM Lab in Leeds.

The researchers tested the magnetic tentacle robot on the lungs of a cadaver and found that it can travel 37% deeper than the standard equipment and leads to less tissue damage.

The results of their investigations, are published in Engineering Communications.

Professor Pietro Valdastri, Director of the STORM Lab and research supervisor, said, "This is a really exciting development. This new approach has the advantage of being specific to the anatomy, softer than the anatomy and fully-shape controllable via magnetics. These three main features have the potential to revolutionize navigation inside the body."

Lung cancer has the highest worldwide cancer mortality rate. In early-stage non-small cell lung cancer, which accounts for around 84% of cases, surgical intervention is the standard of care. However, this is typically highly invasive and leads to the significant removal of tissue. This approach is not suitable for all patients and can have an impact on lung function. 

Demonstration of phantom lung - navigation and localization using magnetic personalized tentacles. Credit: STORM Lab, University of Leeds

Lung cancer screening programs have led to better survival rates but have also highlighted the urgent need to find non-invasive ways to diagnose and treat patients early.

As well as improving navigation within the lungs during biopsies, the magnetic tentacle robot could pave the way for far less invasive treatment, allowing clinicians to target only malicious cells while allowing healthy tissue and organs to continue normal function.

The report's co-author, Dr. Giovanni Pittiglio, who carried out the research while conducting his PHD at the University of Leeds's School of Electronic and Electrical Engineering, added, "Our goal was, and is, to bring curative aid with minimal pain for the patient.

"Remote magnetic actuation enabled us to do this using ultra-soft tentacles which can reach deeper, while shaping to the anatomy and reducing trauma."

The team will now set about collecting all the data that will allow them to start human trials.

A close up of the phantom lung and the magnetic tentacle robot. Credit: STORM Lab, University of Leeds

How magnetic tentacle robots can work together

Researchers at the STORM Lab have also been investigating ways of controlling two independent magnetic robots so that they can work together in a confined area of the human anatomy, allowing one to move a camera and the other to control a laser to remove tumors.

The devices are made of silicone to minimize tissue damage and are steered by magnets mounted on robotic arms outside the patient's body.

Using a replica of a skull, the team successfully trialed the use of two robots to carry out endonasal brain surgery, a technique which allows a surgeon to go through the nose to operate on areas at the front of the brain and the top of the spine.

The researchers needed the magnetic robots to move independently of each other so that one could move the camera, while the other could direct a laser onto a tumor.

First demonstration of bimanual magnetic soft robots for skull-base surgery. Credit: STORM Lab, University of Leeds

Normally, two magnets placed closely together would attract each other, creating a challenge for the researchers. They overcame it by designing the bodies of the tentacles in a way that they can bend only in specific directions and by relocating the north and south poles in each magnetic robot tentacle.

They were then able to simulate the removal of a benign tumor on the pituitary gland at the base of the cranium, proving for the first time ever that it is possible to control two of the robots in one confined area of the body.

The findings of their research is published in Advanced Intelligent Systems.

The paper's lead author, Zaneta Koszowska, a researcher in the University of Leeds School of Electronic and Electrical Engineering, said, "This is a significant contribution to the field of magnetically controlled robotics.

"Our findings show that diagnostic procedures with a camera, as well as full surgical procedures, can be performed in small anatomical spaces." 

by University of Leeds

Source: Tiny surgical robots could transform detection and treatment of cancers (medicalxpress.com)

OpenAI vs xAI: The Battle for the Future | AI Threats How to Protect Against Unintended Consequences - PRO ROBOTS

 

TRY NOT TO LAUGH WATCHING FUNNY FAILS VIDEOS 2023 #10 - Daily Dose Of Laughs

 

Short Clip - Natalie Dormer - The Counselor (2013) - Crime - Drama - Thriller



UNCHARTED (2022) Behind-the-Scenes Chloe And Braddock

 

Funny and Weird Clips (3031)




















 

Saturday, July 29, 2023

Hubble Sees Evaporating Planet Getting the Hiccups - UNIVERSE

A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere – causing it to puff off the planet.

This artist's illustration shows a planet (dark silhouette) passing in front of the red dwarf star AU Microscopii. The planet is so close to the eruptive star a ferocious blast of stellar wind and blistering ultraviolet radiation is heating the planet's hydrogen atmosphere, causing it to escape into space. Four times Earth's diameter, the planet is slowly evaporating its atmosphere, which stretches out linearly along its orbital path. This process may eventually leave behind a rocky core. The illustration is based on measurements made by the Hubble Space Telescope. Credits: NASA, ESA, and Joseph Olmsted (STScI)

But during one orbit observed with NASA's Hubble Space Telescope, the planet looked like it wasn't losing any material at all, while an orbit observed with Hubble a year and a half later showed clear signs of atmospheric loss.

This extreme variability between orbits shocked astronomers. "We've never seen atmospheric escape go from completely not detectable to very detectable over such a short period when a planet passes in front of its star," said Keighley Rockcliffe of Dartmouth College in Hanover, New Hampshire. "We were really expecting something very predictable, repeatable. But it turned out to be weird. When I first saw this, I thought 'That can't be right.'"

Rockcliffe was equally puzzled to see, when it was detectable, the planet's atmosphere puffing out in front of the planet, like a headlight on a fast-bound train. "This frankly strange observation is kind of a stress-test case for the modeling and the physics about planetary evolution. This observation is so cool because we're getting to probe this interplay between the star and the planet that is really at the most extreme," she said.

Located 32 light-years from Earth, the parent star AU Microscopii (AU Mic) hosts one of the youngest planetary systems ever observed. The star is less than 100 million years old (a tiny fraction of the age of our Sun, which is 4.6 billion years old). The innermost planet, AU Mic b, has an orbital period of 8.46 days and is just 6 million miles from the star (about 1/10th the planet Mercury's distance from our Sun). The bloated, gaseous world is about four times Earth's diameter.

AU Mic b was discovered by NASA’s Spitzer and TESS (Transiting Exoplanet Survey Satellite) space telescopes in 2020. It was spotted with the transit method, meaning telescopes can observe a slight dip in the star's brightness when the planet crosses in front of it.

Red dwarfs like AU Microscopii are the most abundant stars in our Milky Way galaxy. They therefore should host the majority of planets in our galaxy. But can planets orbiting red dwarf stars like AU Mic b be hospitable to life? A key challenge is that young red dwarfs have ferocious stellar flares blasting out withering radiation. This period of high activity lasts a lot longer than that of stars like our Sun.

The flares are powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere. When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy that are 100 to 1,000 times more energetic than our Sun unleashes in its outbursts. It's a blistering fireworks show of torrential winds, flares, and X-rays blasting any planets orbiting close to the star. "This creates a really unconstrained and frankly, scary, stellar wind environment that's impacting the planet's atmosphere," said Rockcliffe.

Under these torrid conditions, planets forming within the first 100 million years of the star's birth should experience the most amount of atmospheric escape. This might end up completely stripping a planet of its atmosphere.

"We want to find out what kinds of planets can survive these environments. What will they finally look like when the star settles down? And would there be any chance of habitability eventually, or will they wind up just being scorched planets?" said Rockcliffe. "Do they eventually lose most of their atmospheres and their surviving cores become super-Earths? We don't really know what those final compositions look like because we don't have anything like that in our solar system."

While the star's glare prevents Hubble from directly seeing the planet, the telescope can measure changes in the star's apparent brightness caused by hydrogen bleeding off the planet and dimming the starlight when the planet transits the star. That atmospheric hydrogen has been heated to the point where it escapes the planet's gravity.

A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere – causing it to puff off the planet. But during one orbit observed with the Hubble Space Telescope, the planet looked like it wasn’t losing any material at all, while an orbit observed with Hubble a year and a half later showed clear signs of atmospheric loss. Credits: NASA Goddard Space Flight Center, Lead Producer: Paul Morris

The never-before-seen changes in atmospheric outflow from AU Mic b may indicate swift and extreme variability in the host red dwarf's outbursts. There is so much variability because the star has a lot of roiling magnetic field lines. One possible explanation for the missing hydrogen during one of the planet's transits is that a powerful stellar flare, seen seven hours prior, may have photoionized the escaping hydrogen to the point where it became transparent to light, and so was not detectable.

Another explanation is that the stellar wind itself is shaping the planetary outflow, making it observable at some times and not observable at other times, even causing some of the outflow to "hiccup" ahead of the planet itself. This is predicted in some models, like those of John McCann and Ruth Murray-Clay from the University of California at Santa Cruz, but this is the first kind of observational evidence of it happening and to such an extreme degree, say researchers.

Hubble follow-up observations of more AU Mic b transits should offer additional clues to the star and planet's odd variability, further testing scientific models of exoplanetary atmospheric escape and evolution.

Rockcliffe is lead author on the science paper accepted for publication in The Astronomical Journal.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C. 

Source: Hubble Sees Evaporating Planet Getting the Hiccups | NASA

Researchers tickle rats to identify part of the brain critical for laughter and playfulness


Graphical Abstract CREDIT Neuron Gloveli et al. Credit: Neuron / Gloveli et al.

To study play behaviors in animals, scientists must be able to authentically simulate play-conducive environments in the laboratory.

Animals like rats are less inclined to play if they are anxious or restrained, and there is minimal data on the brain activity of rats that are free to play. After getting rats comfortable with a human playmate, tickling them under controlled conditions, then measuring the rats' squeaks and brain activity, a research team reports on July 27 in the journal Neuron that a structure in rat brains called the periaqueductal gray is essential for play and laughter.

"We know that vocalizations such as laughter are very important in play, which supported the idea that there is some sort of organization signal in the brain regulating this behavior," says senior author Michael Brecht, a neuroscientist at the Humboldt-Universität zu Berlin. "For example, children check for laughter when they play-fight with each other. If their playmate isn't laughing anymore, they stop fighting."

Play is one of the least understood types of behavior, and scientists currently do not know the neural pathways that control the playfulness of humans or other animals. To learn more about the neuroscience of play, these researchers first ensured that the rats they studied were free to move around throughout the experiment. In addition, they gave the rats a few days to get accustomed to their new environment. Once the rats were comfortable, the researchers played games of "chase the hand" with them and tickled the rats on their backs and bellies.

Rats don't laugh the way humans do, but when amused, they do squeak at a high-pitched tone that humans cannot hear. The researchers monitored this sound to ensure that the rats were having fun.


When looking at these animals' brain activity, the researchers found strong neural responses to both tickling and playing in the lateral column of the periaqueductal gray, or PAG.

If this part of the brain was inhibited, the rats stopped engaging in play as much and did not laugh as frequently. On the other hand, if the rats were put in an unfamiliar environment that was designed to provoke anxiety, they also stopped laughing, and the tickling- and play-responsive cells in the lateral column of the PAG decreased their activity.

The PAG is located in the midbrain, and it has been known in the past to control vocalizations and the fight-or-flight response. Play-fighting can also invoke a fight-or-flight response, which might be one explanation for the PAG's role in play. Prior research has shown that playfulness persists even if the cortex, which controls consciousness, fails to develop, which suggests that play is a more instinctual behavior.

"A lot of people think that play is childish or not a very decisive behavior, but play is underrated," says Brecht. "In my perception of play, it's a self-training behavior. Usually, brains serve for controlling behaviors. Play behaviors, however, seem to serve for growing brains."

Next, the researchers plan on seeing if they observe similar activity in the lateral column of other animals when they are being played with, which could allow them to compare the playfulness of different species. They also plan to see if giving younger rats different play habits might change the way that the lateral column of the PAG develops.

by Cell Press

Source: Researchers tickle rats to identify part of the brain critical for laughter and playfulness (medicalxpress.com)

Dangers of the Amazon and Uncontacted Tribes - PowerfulJRE

 

Biggest Nightmare! Fails Of The Week - FailArmy

 

Short Clips - Noomi Rapace - Assassin Club (2023) - Action - Thriller


 

Alexander (2004) Oliver Stone, Colin Farrell, and Angelina Jolie with Charlie Rose


 

THE FLASH (2023) Behind-the-Scenes cinematographic experience

 

Funny and Weird Clips (3030)