This artist’s concept shows what the sub-Neptune exoplanet TOI-421 b might look like. In a new study, scientists have found new evidence suggesting how these types of planets can lose their atmospheres. NASA, ESA, CSA, and D. Player (STScI)
A new study could explain the ‘missing’ exoplanets between super-Earths and
sub-Neptunes.
Some exoplanets seem to be losing
their atmospheres and shrinking. In a new study using NASA’s retired Kepler Space Telescope, astronomers find
evidence of a possible cause: The cores of these planets are pushing away their
atmospheres from the inside out.
Exoplanets (planets outside our solar system) come in a variety of sizes, from small, rocky planets to colossal gas giants. In the middle lie rocky super-Earths and larger sub-Neptunes with puffy atmospheres. But there’s a conspicuous absence – a “size gap” – of planets that fall between 1.5 to 2 times the size of Earth (or in between super-Earths and sub-Neptunes) that scientists have been working to better understand.
This video explains the differences between the
main types of exoplanets, or planets outside our solar system. Credit:
NASA/JPL-Caltech
“Scientists have now confirmed the
detection of over 5,000 exoplanets, but there are fewer planets than expected
with a diameter between 1.5 and 2 times that of Earth,” said Caltech/IPAC
research scientist Jessie Christiansen, science lead for the NASA Exoplanet
Archive and lead author of the new study in The Astronomical Journal.
“Exoplanet scientists have enough data now to say that this gap is not a fluke.
There’s something going on that impedes planets from reaching and/or staying at
this size.”
Researchers think that this gap
could be explained by certain sub-Neptunes losing their atmospheres over time.
This loss would happen if the planet doesn’t have enough mass, and therefore
gravitational force, to hold onto its atmosphere. So sub-Neptunes that aren’t
massive enough would shrink to about the size of super-Earths, leaving the gap
between the two sizes of planets.
But exactly how these planets are
losing their atmospheres has remained a mystery. Scientists have settled on two
likely mechanisms: One is called core-powered mass loss; and the other,
photoevaporation. The study has
uncovered new evidence supporting the first.
This infographic details the main types of exoplanets. Scientists have been working to better understand the “size gap,” or conspicuous absence, of planets that fall between super-Earths and sub-Neptunes. NASA/JPL-Caltech
Solving the Mystery
Core-powered mass loss occurs when
radiation emitted from a planet’s hot core pushes the atmosphere away from the
planet over time, “and that radiation is pushing on the atmosphere from
underneath,” Christiansen said.
The other leading explanation for
the planetary gap, photoevaporation, happens when a planet’s atmosphere is
essentially blown away by the hot radiation of its host star. In this scenario,
“the high-energy radiation from the star is acting like a hair dryer on an ice
cube,” she said.
While photoevaporation is thought
to occur during a planet’s first 100 million years, core-powered mass loss is
thought to happen much later – closer to 1 billion years into a planet’s life.
But with either mechanism, “if you don’t have enough mass, you can’t hold on,
and you lose your atmosphere and shrink down,” Christiansen added.
For this study, Chistiansen and her
co-authors used data from NASA’s K2, an extended
mission of the Kepler Space Telescope, to look at the star clusters Praesepe
and Hyades, which are 600 million to 800 million years old. Because planets are
generally thought to be the same age as their host star, the sub-Neptunes in
this system would be past the age where photoevaporation could have taken place
but not old enough to have experienced core-powered mass loss.
So if the team saw that there were
a lot of sub-Neptunes in Praesepe and Hyades (as compared to older stars in
other clusters), they could conclude that photoevaporation hadn’t taken place.
In that case, core-powered mass loss would be the most likely explanation of
what happens to less massive sub-Neptunes over time.
In observing Praesepe and Hyades,
the researchers found that nearly 100% of stars in these clusters still have a
sub-Neptune planet or planet candidate in their orbit. Judging from the size of
these planets, the researchers think they have retained their atmospheres.
This differs from the other, older
stars observed by K2 (stars more than 800 million years old), only 25% of which
have orbiting sub-Neptunes. The older age of these stars is closer to the
timeframe in which core-powered mass loss is thought to take place.
From these observations, the team
concluded that photoevaporation could not have taken place in Praesepe and
Hyades. If it had, it would have occurred hundreds of millions of years
earlier, and these planets would have little, if any, atmosphere left. This
leaves core-powered mass loss as the leading explanation for what likely
happens to the atmospheres of these planets.
Christiansen’s team spent more than
five years building the planet candidate catalog necessary for the study. But
the research is far from complete, she said, and it is possible that the
current understanding of photoevaporation and/or core-powered mass loss could
evolve. The findings will likely be put to the test by future studies before
anyone can declare the mystery of this planetary gap solved once and for all.
This study was conducted using the NASA Exoplanet Archive, which is operated by Caltech in Pasadena under contract with NASA as part of the Exoplanet Exploration Program, which is located at NASA’s Jet Propulsion Laboratory in Southern California. JPL is a division of Caltech.
Source: NASA Data Reveals Possible Reason Some Exoplanets Are Shrinking - NASA
No comments:
Post a Comment