Sometimes
planetary physics is like being in a snowball fight. Most people, if handed an
already-formed snowball, can use their experience and the feel of the ball to
guess what kind of snow it is composed of: packable and fluffy, or wet and icy.
Using nearly the same principles, planetary scientists have been able to study the structure of Europa,
Jupiter's icy moon.
Europa is a rocky moon, home to
saltwater oceans twice the volume of Earth's, encased in a shell of ice.
Scientists have long thought that Europa may be one of the best places in our
solar system to look for nonterrestrial life. The likelihood and nature of that
life, though, heavily depend on the thickness of its icy shell, something
astronomers have not yet been able to ascertain.
A team of planetary science experts
including Brandon Johnson, an associate professor, and Shigeru Wakita, a
research scientist, in the Department of Earth, Atmospheric, and Planetary
Sciences in Purdue University's College of Science, announced in a new paper published in Science
Advances that Europa's ice shell is at least 20 kilometers thick.
To reach their conclusion, the
scientists studied large craters on Europa, running a variety of models to
determine what combination of physical characteristics could have created such
a surface structure.
"This is the first work that has
been done on this large crater on Europa," Wakita said. "Previous
estimates showed a very thin ice layer over a thick ocean. But our research
showed that there needs to be a thick layer—so thick that convection in the
ice, which has previously been debated, is likely."
Simulation of the formation of a multiring basin
on Europa by a hypervelocity impact. Color illustrates the deformation due to
the impact. The white dotted line depicts the boundary between the ice crust
and the ocean. The V-shape structures seen at 400s and later in the inset
indicate the formation of tectonic features consistent with observed basin
rings. Credit: Shigeru Wakita
Using data and images from the
spacecraft Galileo, which studied Europa in 1998, Johnson analyzed the impact craters to decode truths about Europa's structure. An
expert in planetary physics and colossal collisions, Johnson has studied almost
every major planetary body in the solar system. Scientists have long debated
the thickness of Europa's ice shell; no one has visited to measure it directly,
so scientists are creatively using the evidence at hand: the craters on
Europa's icy surface.
"Impact cratering is the most
ubiquitous surface process shaping planetary bodies," Johnson said.
"Craters are found on almost every solid body we've ever seen. They are a
major driver of change in planetary bodies.
"When an impact crater forms,
it is essentially probing the subsurface structure of a planetary body. By
understanding the sizes and shapes of craters on Europa and reproducing their
formation with numerical simulations, we're able to infer information about how thick its
ice shell is."
Europa is a frozen world, but the
ice shelters a rocky core. The icy surface, though, is not stagnant. Plate
tectonics and convection currents in the oceans and the ice itself refresh the
surface fairly frequently. This means the surface itself is only 50 million to
100 million years old—which sounds old to short-lived organisms like humans,
but is young as far as geological periods go.
That smooth, young surface means
that craters are clearly defined, easier to analyze and not very deep. Their
impacts tell scientists more about the icy shell of the moon and the water
ocean below, rather than conveying much information about its rocky heart.
"Understanding the thickness of the ice is vital to theorizing about possible life on Europa," Johnson said. "How thick the ice shell is controls what kind of processes are happening within it, and that is really important for understanding the exchange of material between the surface and the ocean. That is what will help us understand how all kinds of processes happen on Europa—and help us understand the possibility of life."
by Brittany Steff, Purdue University
Source: Planetary scientists use physics and images of impact craters to gauge thickness of ice on Europa
No comments:
Post a Comment