Artist
illustration of the satellite Intelsat 40e. NASA's TEMPO instrument launched
into geostationary orbit 22,236 miles above Earth's equator in April 2023 as a
payload on the satellite. Credits: Maxar Technologies
NASA has made new data available that
can provide air pollution observations at unprecedented resolutions – down to
the scale of individual neighborhoods. The near real-time data comes from the
agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument,
which launched last year to improve life on Earth by revolutionizing the way
scientists observe air quality from space. This new data is available from the
Atmospheric Science Data Center at NASA’s Langley Research Center in Hampton,
Virginia.
“TEMPO is one of NASA’s Earth observing
instruments making giant leaps to improve life on our home planet,” said NASA
Administrator Bill Nelson. “NASA and the Biden-Harris Administration are
committed to addressing the climate crisis and making climate data more open
and available to all. The air we breathe affects everyone, and this new data is
revolutionizing the way we track air quality for the benefit of humanity.”
The TEMPO instrument measured elevated levels of nitrogen dioxide (NO2) from a number of different areas and emission sources throughout the daytime on March 28, 2024. Yellow, red, purple, and black clusters represent increased levels of pollutants from TEMPO’s data and show drift over time. Credit: Trent Schindler/NASA’s Scientific Visualization Studio
The TEMPO mission gathers hourly daytime scans of the atmosphere over North
America from the Atlantic Ocean to the Pacific Coast, and from Mexico City to
central Canada. The instrument detects pollution by observing how sunlight is
absorbed and scattered by gases and particles in the troposphere, the lowest
layer of Earth’s atmosphere.
“All the pollutants that TEMPO is measuring cause health issues,” said Hazem Mahmoud, science lead at NASA Langley’s Atmospheric Science Data Center. “We have more than 500 early adopters using these datasets right away. We expect to see epidemiologists and health experts using this data in the near future. Researchers studying the respiratory system and the impact of these pollutants on people’s health will find TEMPO’s measurements invaluable.”
An early
adopter program has allowed policymakers and other air quality stakeholders to
understand the capabilities and benefits of TEMPO’s
measurements. Since October 2023, the TEMPO calibration and
validation team has been working to evaluate and improve TEMPO data products.
“We have more than 500 early adopters that will be using these datasets
right away.
HAZEM MAHMOUD
NASA Data Scientist
“Data gathered by TEMPO will play an
important role in the scientific analysis of pollution,” said Xiong Liu, senior
physicist at the Smithsonian Astrophysical Observatory and principal
investigator for the mission. “For example, we will be able to conduct studies
of rush hour pollution, linkages of diseases and health issues to acute
exposure of air pollution, how air pollution disproportionately impacts
underserved communities, the potential for improved air quality alerts, the
effects of lightning on ozone, and the movement of pollution from forest fires
and volcanoes.”
Measurements by TEMPO include air
pollutants such as nitrogen dioxide, formaldehyde, and ground-level ozone.
High NO2 levels associated with prescribed burns are seen popping up across East Texas, Oklahoma, Louisiana, Arkansas, and Mississippi, beginning around 1:00 p.m. and extending into the evening. Elevated NO2 levels are visible in cities from El Paso to Memphis. Credit: Trent Schindler/NASA’s Scientific Visualization Studio
“Poor air quality exacerbates pre-existing health issues, which leads to
more hospitalizations,” said Jesse Bell, executive director at the University
of Nebraska Medical Center’s Water, Climate, and Health Program. Bell is
an early adopter of TEMPO’s data.
Bell noted that there is a lack of
air quality data in rural areas since monitoring stations are often hundreds of
miles apart. There is also an observable disparity in air quality from
neighborhood to neighborhood.
“Low-income communities, on
average, have poorer air quality than more affluent communities,” said Bell.
“For example, we’ve conducted studies and found that in Douglas County, which
surrounds Omaha, the eastern side of the county has higher rates of pediatric
asthma hospitalizations. When we identify what populations are going to the
hospital at a higher rate than others, it’s communities of color and people
with indicators of poverty. Data gathered by TEMPO is going to be incredibly
important because you can get better spatial and temporal resolution of air
quality across places like Douglas County.”
Determining sources of air
pollution can be difficult as smoke from wildfires or pollutants from industry
and traffic congestion drift on winds. The TEMPO instrument will make it easier
to trace the origin of some pollutants.
TEMPO observes the northerly transport of NO2 from the Permian basin, a large oil and natural gas producing area spanning parts of West Texas and southeastern New Mexico, with the highest levels measured during the morning over the basin. NO2 plumes from coal-fired power plants are visible in the rural areas far west and northwest of Houston and far east of Dallas between 8:00 a.m. and 2:00 p.m. Credit: Trent Schindler/NASA’s Scientific Visualization Studio
“The National Park Service is using TEMPO data to gain new insight into
emerging air quality issues at parks in southeast New Mexico,” explained
National Park Service chemist, Barkley Sive. “Oil and gas emissions from the
Permian Basin have affected air quality at Carlsbad Caverns and other parks and
their surrounding communities. While pollution control strategies have
successfully decreased ozone levels across most of the United States, the data
helps us understand degrading air quality in the region.”
The TEMPO instrument was built by BAE Systems, Inc., Space & Mission Systems (formerly Ball Aerospace) and flies aboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Ground System, including the Instrument Operations Center and the Science Data Processing Center, are operated by the Smithsonian Astrophysical Organization, part of the Center for Astrophysics | Harvard & Smithsonian.
To learn more about TEMPO visit: https://nasa.gov/tempo
Source: NASA
Releases New High-Quality, Near Real-Time Air Quality Data - NASA
No comments:
Post a Comment