Friday, June 30, 2023

Webb Makes First Detection of Crucial Carbon Molecule - UNIVERSE

A team of international scientists has used NASA’s James Webb Space Telescope to detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Carbon compounds form the foundations of all known life, and as such are particularly interesting to scientists working to understand both how life developed on Earth, and how it could potentially develop elsewhere in our universe. The study of interstellar organic (carbon-containing) chemistry, which Webb is opening in new ways, is an area of keen fascination to many astronomers.

These Webb images show a part of the Orion Nebula known as the Orion Bar. The largest image, on the left, is from Webb’s NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb’s MIRI (Mid-Infrared Instrument). At the very center of the MIRI area is a young star system with a protoplanetary disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system. Credits: ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), and the PDRs4All ERS Team

Download the full-resolution, uncompressed version and supporting visuals from the Space Telescope Science Institute.

The unique capabilities of Webb made it an ideal observatory to search for this crucial molecule. Webb’s exquisite spatial and spectral resolution, as well as its sensitivity, all contributed to the team’s success. In particular, Webb’s detection of a series of key emission lines from CH3+ cemented the discovery.

“This detection not only validates the incredible sensitivity of Webb but also confirms the postulated central importance of CH3+ in interstellar chemistry,” said Marie-Aline Martin-Drumel of the University of Paris-Saclay in France, a member of the science team.While the star in d203-506 is a small red dwarf, the system is bombarded by strong ultraviolet (UV) light from nearby hot, young, massive stars. Scientists believe that most planet-forming disks go through a period of such intense UV radiation, since stars tend to form in groups that often include massive, UV-producing stars. 

This image taken by Webb’s NIRCam (Near-Infrared Camera) shows a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here. Credits: ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), and the PDRs4All ERS Team

Download the full-resolution, uncompressed version and supporting visuals from the Space Telescope Science Institute.

Typically, UV radiation is expected to destroy complex organic molecules, in which case the discovery of CH3+ might seem to be a surprise. However, the team predicts that UV radiation might actually provide the necessary source of energy for CH3+ to form in the first place. Once formed, it then promotes additional chemical reactions to build more complex carbon molecules.

This image from Webb’s MIRI (Mid-Infrared Instrument) shows a small region of the Orion Nebula. At the center of this view is a young star system with a protoplanetary disk named d203-506. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506. Credits: ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), and the PDRs4All ERS Team

Download the full-resolution, uncompressed version and supporting visuals from the Space Telescope Science Institute.

Broadly, the team notes that the molecules they see in d203-506 are quite different from typical protoplanetary disks. In particular, they could not detect any signs of water.

“This clearly shows that ultraviolet radiation can completely change the chemistry of a protoplanetary disk. It might actually play a critical role in the early chemical stages of the origins of life,” elaborated Olivier Berné of the French National Centre for Scientific Research in Toulouse, lead author of the study.

These findings, which are from the PDRs4ALL Early Release Science program, have been published in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Source: Webb Makes First Detection of Crucial Carbon Molecule | NASA

Engineering liquid crystal elastomers inspired by elephant trunks to make artificial plants


Versatile functionalities of HAFMS-TSAs. (A) Predicted cavity volume change ratio of HAFMS-TSAs as a function of θ. (B) Photographs showing fluid pumping driven by leveraging the cavity volume change of HAFMS-TSA upon light irradiation. (C) Wringing deformation is driven by the twisting motion of the HAFMS-TSA, and it causes torsional buckling of the elastic tube, leading to its collapse and squeezing the most fluid out of the wrung tube. (D) Large ejection fraction achieved by wringing motion, which is induced by the twisting motion of HAFMS-TSAs. (E) HAFMS-TSA adapt to a meandering pipe to unscrew a bolt through a photo-driven twisting motion. Credit: Science Advances (2023). DOI: 10.1126/sciadv.adh3350

Engineers at Westlake University, China, have created a synthetic tube of liquid crystal elastomers with a unique range of motion. In their paper, "Bioinspired helical-artificial fibrous muscle structured tubular soft actuators," published in Science Advances, the engineering team reveals the unique manufacturing technique used to achieve a remarkably versatile tubular structure.

Creating tubular soft actuators with controllable and programmable shape transformations is highly desired for scientific and engineering applications. Current synthetic tubular actuators using soft active materials have limited contraction and expansion deformations and heavily restricted degrees of freedom, hindering their potential uses.

The researchers leverage liquid crystal elastomers (LCEs), a type of smart active material, to develop tubular soft actuators. LCEs can undergo large-scale reversible deformations and can be encoded with "morphing instructions." This enables the creation of compact, programmable, small-scale morphing devices with wide-ranging potential engineering applications.

For inspiration, the researchers investigated the most impressive tubular soft actuator in nature, the elephant's trunk. Without bones and joints, the long trunk of an elephant can still operate a wide range of complex tasks, from breathing and trumpeting to drinking and showering, grabbing objects, lifting and manipulating them, and articulating with unparalleled degrees of freedom.


Elephant trunk muscle fibers are multi-layered, directionally arranged and wound around the trunk's long axis to form the tubular structure. Assignment of specific alignments allows the trunk to take on diverse morphing modes including single-deformation modes, such as shortening, elongation, bending, and torsion, but also compound morphing modes that combine two or more deformations.

Based on the trunk musculature, the researchers developed a fabrication platform for filament winding to construct helical-artificial fibrous muscle-structured tubular soft actuators (HAFMS-TSAs). With these directional arrangements, they could replicate the natural concept and achieve programmable deformations in the HAFMS-TSAs. The researchers also discovered critical winding angles that enable the decoupling and coupling of different types of deformations, further expanding the range of achievable morphing behaviors.

The researchers then applied HAFMS-TSAs to the creation of an artificial plant capable of displaying all three categories of photoresponse movements observed in real plants: phototropic movements (orienting toward the light), photophobic movements (orienting away from the light), and photonastic movements (morphing and orienting upon light irradiation, regardless of light direction).

Further borrowing from observations in nature, the artificial plant was designed with photoresponsive organs, stems, branches and leaves with specific photoresponses. The lower stem remained photophobic, maintaining support for the upper phototropic structures bending towards the light. When the light intensity exceeds a given threshold, the branches and leaves turn away from the light through a built-in feedback loop that provides an effective self-protection mechanism.

Adaptive and autonomous tubular morphing structures that respond to varying radiation environments could have applications in solar energy collection, solar sails for space stations, probes or satellites, self-regulating optical devices, thermo-regulating buildings or as a house plant that never needs watering and can occasionally hand you a peanut.

by Justin Jackson , Tech Xplore

Source Engineering liquid crystal elastomers inspired by elephant trunks to make artificial plants (techxplore.com)

Record-breaking waves entice surfers | 60 Minutes Archive - 60 Minutes

 

TRY NOT TO LAUGH WATCHING FUNNY FAILS VIDEOS 2023 #1 - Daily Dose Of Laughs

 

Short Clips - Angelina Jolie - Those Who Wish Me Dead (2021) - Action - Drama - Thriller



 

Indiana Jones Cast on Laughs, Stunts, and Deaths in 'Dial of Destiny' - IMDb

 

INDIANA JONES AND THE DIAL OF DESTINY (2023) Behind-the-Scenes Map of Adventures

 

Funny and Weird Clips (3005)



















 

Thursday, June 29, 2023

Saturn’s Northern Hexagon - UNIVERSE


Why would clouds form a hexagon on Saturn? Nobody is sure. Originally discovered during the Voyager flybys of Saturn in the 1980s, nobody has ever seen anything like it anywhere else in the Solar System. Acquiring its first sunlit views of far northern Saturn in late 2012, the Cassini spacecraft’s wide-angle camera recorded this stunning, false-color image of the ringed planet’s north pole. The composite of near-infrared image data results in red hues for low clouds and green for high ones, giving the Saturnian cloudscape a vivid appearance. This and similar images show the stability of the hexagon even 20+ years after Voyager. Movies of Saturn’s North Pole show the cloud structure maintaining its hexagonal structure while rotating. Unlike individual clouds appearing like a hexagon on Earth, the Saturn cloud pattern appears to have six well defined sides of nearly equal length. Four Earths could fit inside the hexagon. Beyond the cloud tops at the upper right, arcs of the planet’s eye-catching rings are tinted bright blue.

Image & info via APOD

Image Credit & Copyright: NASAESAJPLSSICassini Imaging Team 

Source:  Saturn’s Northern Hexagon – Scents of Science (myfusimotors.com)

Soft robo-glove can help stroke patients relearn to play music


Credit: M Lin, R Paul, M Abd, J Jones, D Dieujuste, H Chim, E Engeberg

Stroke is the most important cause of disability for adults in the EU, which affects approximately 1.1 million inhabitants each year. After a stroke, patients commonly need rehabilitation to relearn to walk, talk, or perform daily tasks. Research has shown that besides physical and occupational therapy, music therapy can help stroke patients to recover language and motor function.

But for people trained in music and who suffered a stroke, playing music may itself be a skill that needs to be relearned. Now, a study in Frontiers in Robotics and AI has shown how novel soft robotics can help recovering patients to relearn playing music and other skills that require dexterity and coordination.

"Here we show that our smart exoskeleton glove, with its integrated tactile sensors, soft actuators, and artificial intelligence, can effectively aid in the relearning of manual tasks after neurotrauma," said lead author Dr. Maohua Lin, an adjunct professor at the Department of Ocean & Mechanical Engineering of Florida Atlantic University.

Whom the glove fits: Custom-made 'smart hand'

Lin and colleagues designed and tested a "smart hand exoskeleton" in the shape of a multi-layered, flexible 3D-printed robo-glove, which weighs only 191g. The entire palm and wrist area of the glove are designed to be soft and flexible, and the shape of the glove can be custom-made to fit each wearer's anatomy.

The robo-glove or smart hand exoskeleton in action. Credit: M Lin, R Paul, M Abd, J Jones, D Dieujuste, H Chim, E Engeberg

Soft pneumatic actuators in its fingertips generate motion and exert force, thus mimicking natural, fine-tuned hand movements. Each fingertip also contains an array of 16 flexible sensors or "taxels," which give tactile sensations to the wearer's hand upon interaction with objects or surfaces. Production of the glove is straightforward, as all actuators and sensors are put in place through a single molding process.

"While wearing the glove, human users have control over the movement of each finger to a significant extent," said senior author Dr. Erik Engeberg, a professor at Florida Atlantic University's Department of Ocean & Mechanical Engineering.

"The glove is designed to assist and enhance their natural hand movements, allowing them to control the flexion and extension of their fingers. The glove supplies hand guidance, providing support and amplifying dexterity."

The authors foresee that patients might ultimately wear a pair of these gloves, to help both hands independently to regain dexterity, motor skills, and a sense of coordination.

AI trained the glove to be a music teacher

The authors used machine learning to successfully teach the glove to "feel" the difference between playing a correct versus incorrect versions of a beginner's song on the piano. Here, the glove operated autonomously without human input, with preprogrammed movements. The song was "Mary had a little lamb," which requires four fingers to play.

"We found that the glove can learn to distinguish between correct and incorrect piano play. This means it could be a valuable tool for personalized rehabilitation of people who wish to relearn to play music," said Engeberg.

Now that the proof-of-principle has been shown, the glove can be programmed to give feedback to the wearer about what went right or wrong in their play, either through haptic feedback, visual cues, or sound. These would enable her or him to understand their performance and make improvements.

Lin added, "Adapting the present design to other rehabilitation tasks beyond playing music, for example object manipulation, would require customization to individual needs. This can be facilitated through 3D scanning technology or CT scans to ensure a personalized fit and functionality for each user."

"But several challenges in this field need to be overcome. These include improving the accuracy and reliability of tactile sensing, enhancing the adaptability and dexterity of the exoskeleton design, and refining the machine learning algorithms to better interpret and respond to user input."

by Frontiers

Source: Soft robo-glove can help stroke patients relearn to play music (techxplore.com)

Researcher Amanda Feilding on The Effects of Psychedelic Use on the Ego - PowerfulJRE

 

Idiots Around The World! Funny Global Fails - FailArmy

 

Short Clip - Jacqueline Bisset - The First Time (1969) - Comedy - Drama



 

BLACK MIRROR Interview | Josh Hartnett and Kate Mara Talk Aaron Paul and "Beyond the Sea" Episode - Jake's Takes

 

INDIANA JONES AND THE DIAL OF DESTINY (2023) Behind-the-Scenes Behind the Action

 

Funny and Weird Clips (3004)