A new sounding rocket mission is headed to space to understand how explosive stellar deaths lay the groundwork for new star systems. The Integral Field Ultraviolet Spectroscopic Experiment, or INFUSE, sounding rocket mission, will launch from the White Sands Missile Range in New Mexico on Oct. 29, 2023, at 9:35 p.m. MDT.
For a few months each year, the constellation Cygnus (Latin for “swan”) swoops through the northern hemisphere’s night sky. Just above its wing is a favorite target for backyard astronomers and professional scientists alike: the Cygnus Loop, also known as the Veil Nebula.
This image shows an illustration of the constellation Cygnus, Latin for “swan,” in the night sky. The Cygnus Loop supernova remnant, also known as the Veil Nebula, is located near one of the swan’s wings, outlined here in a rectangular box. NASA
The Cygnus Loop is the remnant of a
star that was once 20 times the size of our Sun. Some 20,000 years ago, that
star collapsed under its own gravity and erupted into a supernova. Even from
2,600 light-years away, astronomers estimate the flash of light would have been
bright enough to see from Earth during the day.
This image taken by NASA’s Hubble Space Telescope shows part of the Veil Nebula or Cygnus Loop. To create this colorful image, observations were taken by Hubble's Wide Field Camera 3 instrument using five different filters. New post-processing methods have further enhanced details of emissions from doubly ionized oxygen (shown here in shades of blue), ionized hydrogen, and ionized nitrogen (shown here in shades of red). ESA/Hubble & NASA, Z. Levay
Supernovae are part of a great life
cycle. They spray heavy metals forged in a star’s core into the clouds of
surrounding dust and gas. They are the source of all chemical elements in our
universe heavier than iron, including those that make up our own bodies. From
the churned-up clouds and star stuff left in their wake, gases and dust from
supernovae gradually clump together to form planets, stars, and new star
systems.
“Supernovae like the one that
created the Cygnus Loop have a huge impact on how galaxies form,” said Brian
Fleming, a research professor at the University of Colorado Boulder and
principal investigator for the INFUSE mission.
The Cygnus Loop provides a rare
look at a supernova blast still in progress. Already over 120 light-years
across, the massive cloud is still expanding today at approximately 930,000
miles per hour (about 1.5 million kilometers per hour).
What our telescopes capture from
the Cygnus Loop is not the supernova blast itself. Instead, we see the dust and
gas superheated by the shock front, which glows as it cools back down.
“INFUSE will observe how the
supernova dumps energy into the Milky Way by catching light given off just as
the blast wave crashes into pockets of cold gas floating around the galaxy,”
Fleming said.
To see that shock front at its
sizzling edge, Fleming and his team have developed a telescope that measures
far-ultraviolet light – a kind of light too energetic for our eyes to see. This
light reveals gas at temperatures between 90,000 and 540,000 degrees Fahrenheit
(about 50,000 to 300,000 degrees Celsius) that is still sizzling after impact.
INFUSE is an integral field
spectrograph, the first instrument of its kind to fly to space. The instrument
combines the strengths of two ways of studying light: imaging and spectroscopy.
Your typical telescopes have cameras that excel at creating images – showing
where light is coming from, faithfully revealing its spatial arrangement. But
telescopes don’t separate light into different wavelengths or “colors” –
instead, all of the different wavelengths overlap one another in the resulting
image.
Spectroscopy, on the other hand, takes a single beam of light and
separates it into its component wavelengths or spectrum, much as a prism
separates light into a rainbow. This procedure reveals all kinds of information
about what the light source is made of, its temperature, and how it is moving.
But spectroscopy can only look at a single sliver of light at a time. It’s like
looking at the night sky through a narrow keyhole.
The INFUSE instrument captures an
image and then “slices” it up, lining up the slices into one giant “keyhole.”
The spectrometer can then spread each of the slices into its spectrum. This
data can be reassembled into a 3-dimensional image that scientists call a “data
cube” – like a stack of images where each layer reveals a specific wavelength
of light.
PhD student Emily Witt installs the delicate image slicer – the core optical technology for INFUSE – onto its mount in a CU-LASP clean room ahead of integration into the payload. CU Boulder LASP/Brian Fleming
Using the data from INFUSE, Fleming
and his team will not only identify specific elements and their temperatures,
but they’ll also see where those different elements lie along the shock front.
“It’s a very exciting project to be
a part of,” said lead graduate student Emily Witt, also at CU Boulder, who led
most of the assembly and testing of INFUSE and will lead the data analysis.
“With these first-of-their-kind measurements, we will better understand how
these elements from the supernova mix with the environment around them. It’s a
big step toward understanding how material from supernovas becomes part of
planets like Earth and even people like us.”
To get to space, the INFUSE payload
will fly aboard a sounding rocket. These nimble, crewless rockets launch into
space for a few minutes of data collection before falling back to the ground.
The INFUSE payload will fly aboard a two-stage Black Brant 9 sounding rocket,
aiming for a peak altitude of about 150 miles (240 kilometers), where it will
make its observations, before parachuting back to the ground to be recovered.
The team hopes to upgrade the instrument and launch again. In fact, parts of
the INFUSE rocket are themselves repurposed from the DEUCE mission, which launched from Australia in 2022.
NASA's Sounding Rocket Program is conducted at the agency's Wallops Flight Facility at Wallops Island, Virginia, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA's Heliophysics Division manages the sounding rocket program for the agency. The development of the INFUSE payload was supported by NASA’s Astrophysics Division.
Source: NASA Rocket to See Sizzling Edge of Star-Forming Supernova - NASA Science
No comments:
Post a Comment