Monday, August 14, 2017
Brain Plasticity - How adult-born neurons get wired-in - NEUROSCIENCE
One goal in neurobiology is to understand how the flow of electrical signals through brain circuits gives rise to perception, action, thought, learning and memories.
Linda Overstreet-Wadiche, Ph.D., and Jacques Wadiche, Ph.D., both associate professors in the University of Alabama at Birmingham Department of Neurobiology, have published their latest contribution in this effort, focused on a part of the brain that helps form memories — the dentate gyrus of the hippocampus.
The dentate gyrus is one of just two areas in the brain where new neurons are continuously formed in adults. When a new granule cell neuron is made in the dentate gyrus, it needs to get ‘wired in,’ by forming synapses, or connections, in order to contribute to circuit function. Dentate granule cells are part of a circuit that receive electrical signals from the entorhinal cortex, a cortical brain region that processes sensory and spatial input from other areas of the brain. By combining this sensory and spatial information, the dentate gyrus can generate a unique memory of an experience.
Overstreet-Wadiche and UAB colleagues posed a basic question: Since the number of neurons in the dentate gyrus increases by neurogenesis while the number of neurons in the cortex remains the same, does the brain create additional synapses from the cortical neurons to the new granule cells, or do some cortical neurons transfer their connections from mature granule cells to the new granule cells?
Their answer, garnered through a series of electrophysiology, dendritic spine density and immunohistochemistry experiments with mice that were genetically altered to produce either more new neurons or kill off newborn neurons, supports the second model — some of the cortical neurons transfer their connections from mature granule cells to the new granule cells.
This opens the door to look at how this redistribution of synapses between the old and new neurons helps the dentate gyrus function. And it opens up tantalizing questions. Does this redistribution disrupt existing memories? How does this redistribution relate to the beneficial effects of exercise, which is a natural way to increase neurogenesis?
Source & further reading:http://www.uab.edu/news/innovation/item/7957-brain-plasticity-how-adult-born-neurons-get-wired-in
Journal article:https://elifesciences.org/articles/19886
Image via Science Direct showing the distinct folded shape of the hippocampal region. The darkly stained area represents the dentate gyrus of the hippocampus.
source: Corina Marinaescu
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment